load_scannet_data.py 6.83 KB
Newer Older
1
2
# Modified from
# https://github.com/facebookresearch/votenet/blob/master/scannet/load_scannet_data.py
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
wangtai's avatar
wangtai committed
7
8
"""Load Scannet scenes with vertices and ground truth labels for semantic and
instance segmentations."""
liyinhao's avatar
liyinhao committed
9
10
11
12
import argparse
import inspect
import json
import numpy as np
wangtai's avatar
wangtai committed
13
import os
liyinhao's avatar
liyinhao committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import scannet_utils

currentdir = os.path.dirname(
    os.path.abspath(inspect.getfile(inspect.currentframe())))


def read_aggregation(filename):
    assert os.path.isfile(filename)
    object_id_to_segs = {}
    label_to_segs = {}
    with open(filename) as f:
        data = json.load(f)
        num_objects = len(data['segGroups'])
        for i in range(num_objects):
            object_id = data['segGroups'][i][
                'objectId'] + 1  # instance ids should be 1-indexed
            label = data['segGroups'][i]['label']
            segs = data['segGroups'][i]['segments']
            object_id_to_segs[object_id] = segs
            if label in label_to_segs:
                label_to_segs[label].extend(segs)
            else:
                label_to_segs[label] = segs
    return object_id_to_segs, label_to_segs


def read_segmentation(filename):
    assert os.path.isfile(filename)
    seg_to_verts = {}
    with open(filename) as f:
        data = json.load(f)
        num_verts = len(data['segIndices'])
        for i in range(num_verts):
            seg_id = data['segIndices'][i]
            if seg_id in seg_to_verts:
                seg_to_verts[seg_id].append(i)
            else:
                seg_to_verts[seg_id] = [i]
    return seg_to_verts, num_verts


def export(mesh_file,
           agg_file,
           seg_file,
           meta_file,
           label_map_file,
60
61
           output_file=None,
           is_train=True):
62
63
64
    """Export original files to vert, ins_label, sem_label and bbox file.

    Args:
liyinhao's avatar
liyinhao committed
65
66
67
68
69
70
        mesh_file (str): Path of the mesh_file.
        agg_file (str): Path of the agg_file.
        seg_file (str): Path of the seg_file.
        meta_file (str): Path of the meta_file.
        label_map_file (str): Path of the label_map_file.
        output_file (str): Path of the output folder.
71
            Default: None.
72
73
        is_train (bool): Whether is generating training data with labels.
            Default: True.
74

liyinhao's avatar
liyinhao committed
75
    It returns a tuple, which containts the the following things:
liyinhao's avatar
liyinhao committed
76
77
78
79
        np.ndarray: Vertices of points data.
        np.ndarray: Indexes of label.
        np.ndarray: Indexes of instance.
        np.ndarray: Instance bboxes.
80
        dict: Map from object_id to label_id.
liyinhao's avatar
liyinhao committed
81
    """
82

liyinhao's avatar
liyinhao committed
83
84
85
86
87
88
    label_map = scannet_utils.read_label_mapping(
        label_map_file, label_from='raw_category', label_to='nyu40id')
    mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file)

    # Load scene axis alignment matrix
    lines = open(meta_file).readlines()
89
90
91
    # TODO: test set data doesn't have align_matrix!
    # TODO: save align_matrix and move align step to pipeline in the future
    axis_align_matrix = np.eye(4)
liyinhao's avatar
liyinhao committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    for line in lines:
        if 'axisAlignment' in line:
            axis_align_matrix = [
                float(x)
                for x in line.rstrip().strip('axisAlignment = ').split(' ')
            ]
            break
    axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
    pts = np.ones((mesh_vertices.shape[0], 4))
    pts[:, 0:3] = mesh_vertices[:, 0:3]
    pts = np.dot(pts, axis_align_matrix.transpose())  # Nx4
    mesh_vertices[:, 0:3] = pts[:, 0:3]

    # Load semantic and instance labels
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    if is_train:
        object_id_to_segs, label_to_segs = read_aggregation(agg_file)
        seg_to_verts, num_verts = read_segmentation(seg_file)
        label_ids = np.zeros(shape=(num_verts), dtype=np.uint32)
        object_id_to_label_id = {}
        for label, segs in label_to_segs.items():
            label_id = label_map[label]
            for seg in segs:
                verts = seg_to_verts[seg]
                label_ids[verts] = label_id
        instance_ids = np.zeros(
            shape=(num_verts), dtype=np.uint32)  # 0: unannotated
        num_instances = len(np.unique(list(object_id_to_segs.keys())))
        for object_id, segs in object_id_to_segs.items():
            for seg in segs:
                verts = seg_to_verts[seg]
                instance_ids[verts] = object_id
                if object_id not in object_id_to_label_id:
                    object_id_to_label_id[object_id] = label_ids[verts][0]
        instance_bboxes = np.zeros((num_instances, 7))
        for obj_id in object_id_to_segs:
            label_id = object_id_to_label_id[obj_id]
            obj_pc = mesh_vertices[instance_ids == obj_id, 0:3]
            if len(obj_pc) == 0:
                continue
            xmin = np.min(obj_pc[:, 0])
            ymin = np.min(obj_pc[:, 1])
            zmin = np.min(obj_pc[:, 2])
            xmax = np.max(obj_pc[:, 0])
            ymax = np.max(obj_pc[:, 1])
            zmax = np.max(obj_pc[:, 2])
            bbox = np.array([(xmin + xmax) / 2, (ymin + ymax) / 2,
                             (zmin + zmax) / 2, xmax - xmin, ymax - ymin,
                             zmax - zmin, label_id])
            # NOTE: this assumes obj_id is in 1,2,3,.,,,.NUM_INSTANCES
            instance_bboxes[obj_id - 1, :] = bbox
    else:
        label_ids = None
        instance_ids = None
        instance_bboxes = None
        object_id_to_label_id = None
liyinhao's avatar
liyinhao committed
147
148
149

    if output_file is not None:
        np.save(output_file + '_vert.npy', mesh_vertices)
150
151
152
153
        if is_train:
            np.save(output_file + '_sem_label.npy', label_ids)
            np.save(output_file + '_ins_label.npy', instance_ids)
            np.save(output_file + '_bbox.npy', instance_bboxes)
liyinhao's avatar
liyinhao committed
154

155
    return mesh_vertices, label_ids, instance_ids, \
liyinhao's avatar
liyinhao committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        instance_bboxes, object_id_to_label_id


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--scan_path',
        required=True,
        help='path to scannet scene (e.g., data/ScanNet/v2/scene0000_00')
    parser.add_argument('--output_file', required=True, help='output file')
    parser.add_argument(
        '--label_map_file',
        required=True,
        help='path to scannetv2-labels.combined.tsv')
    opt = parser.parse_args()

    scan_name = os.path.split(opt.scan_path)[-1]
    mesh_file = os.path.join(opt.scan_path, scan_name + '_vh_clean_2.ply')
    agg_file = os.path.join(opt.scan_path, scan_name + '.aggregation.json')
    seg_file = os.path.join(opt.scan_path,
                            scan_name + '_vh_clean_2.0.010000.segs.json')
    meta_file = os.path.join(
        opt.scan_path, scan_name +
        '.txt')  # includes axisAlignment info for the train set scans.
    export(mesh_file, agg_file, seg_file, meta_file, opt.label_map_file,
           opt.output_file)


if __name__ == '__main__':
    main()