create_data.py 4.3 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
import argparse
import os.path as osp

import tools.data_converter.kitti_converter as kitti
import tools.data_converter.nuscenes_converter as nuscenes_converter
6
7
import tools.data_converter.scannet_converter as scannet
import tools.data_converter.sunrgbd_converter as sunrgbd
zhangwenwei's avatar
zhangwenwei committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from tools.data_converter.create_gt_database import create_groundtruth_database


def kitti_data_prep(root_path, info_prefix, version, out_dir):
    kitti.create_kitti_info_file(root_path, info_prefix)
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
        '{}/{}_infos_train.pkl'.format(out_dir, info_prefix),
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
        return

    info_train_path = osp.join(root_path,
                               '{}_infos_train.pkl'.format(info_prefix))
    info_val_path = osp.join(root_path, '{}_infos_val.pkl'.format(info_prefix))
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
    create_groundtruth_database(
        dataset_name, root_path, info_prefix,
        '{}/{}_infos_train.pkl'.format(out_dir, info_prefix))


48
49
50
51
52
53
54
55
def scannet_data_prep(root_path, info_prefix, out_dir):
    scannet.create_scannet_info_file(root_path, info_prefix, out_dir)


def sunrgbd_data_prep(root_path, info_prefix, out_dir):
    sunrgbd.create_sunrgbd_info_file(root_path, info_prefix, out_dir)


zhangwenwei's avatar
zhangwenwei committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
    required='False',
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir)
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
117
118
119
120
121
122
123
124
125
126
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir)
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir)