kitti-3d-3class.py 4.01 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)),
    classes=class_names,
    sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6))

file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
#     backend='petrel', path_mapping=dict(data='s3://kitti_data/'))

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
27
        coord_type='LIDAR',
zhangwenwei's avatar
zhangwenwei committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        load_dim=4,
        use_dim=4,
        file_client_args=file_client_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        file_client_args=file_client_args),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
wuyuefeng's avatar
wuyuefeng committed
43
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
49
50
51
52
53
54
55
56
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
57
        coord_type='LIDAR',
zhangwenwei's avatar
zhangwenwei committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        load_dim=4,
        use_dim=4,
        file_client_args=file_client_args),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]

data = dict(
    samples_per_gpu=6,
    workers_per_gpu=4,
    train=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file=data_root + 'kitti_infos_train.pkl',
            split='training',
            pts_prefix='velodyne_reduced',
            pipeline=train_pipeline,
            modality=input_modality,
            classes=class_names,
wuyuefeng's avatar
Demo  
wuyuefeng committed
98
99
100
101
            test_mode=False,
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
            box_type_3d='LiDAR')),
zhangwenwei's avatar
zhangwenwei committed
102
103
104
105
106
107
108
109
110
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
        pts_prefix='velodyne_reduced',
        pipeline=test_pipeline,
        modality=input_modality,
        classes=class_names,
wuyuefeng's avatar
Demo  
wuyuefeng committed
111
112
        test_mode=True,
        box_type_3d='LiDAR'),
zhangwenwei's avatar
zhangwenwei committed
113
114
115
116
117
118
119
120
121
    test=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
        pts_prefix='velodyne_reduced',
        pipeline=test_pipeline,
        modality=input_modality,
        classes=class_names,
wuyuefeng's avatar
Demo  
wuyuefeng committed
122
123
        test_mode=True,
        box_type_3d='LiDAR'))
zhangwenwei's avatar
zhangwenwei committed
124
125

evaluation = dict(interval=1)