new_dataset.md 8.96 KB
Newer Older
zhangwenwei's avatar
Doc  
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Tutorial 2: Adding New Dataset

## Customize datasets by reorganizing data

### Reorganize dataset to existing format

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

The annotation json files in COCO format has the following necessary keys:

```python
'images': [
    {
        'file_name': 'COCO_val2014_000000001268.jpg',
        'height': 427,
        'width': 640,
        'id': 1268
    },
    ...
],

'annotations': [
    {
        'segmentation': [[192.81,
            247.09,
            ...
            219.03,
            249.06]],  # if you have mask labels
        'area': 1035.749,
        'iscrowd': 0,
        'image_id': 1268,
        'bbox': [192.81, 224.8, 74.73, 33.43],
        'category_id': 16,
        'id': 42986
    },
    ...
],

'categories': [
    {'id': 0, 'name': 'car'},
 ]
```

There are three necessary keys in the json file:
- `images`: contains a list of images with theire informations like `file_name`, `height`, `width`, and `id`.
- `annotations`: contains the list of instance annotations.
- `categories`: contains the list of categories names and their ID.

After the data pre-processing, the users need to further modify the config files to use the dataset.
Here we show an example of using a custom dataset of 5 classes, assuming it is also in COCO format.

In `configs/my_custom_config.py`:

```python
...
# dataset settings
dataset_type = 'CocoDataset'
classes = ('a', 'b', 'c', 'd', 'e')
...
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        classes=classes,
        ann_file='path/to/your/train/data',
        ...),
    val=dict(
        type=dataset_type,
        classes=classes,
        ann_file='path/to/your/val/data',
        ...),
    test=dict(
        type=dataset_type,
        classes=classes,
        ann_file='path/to/your/test/data',
        ...))
...
```

We use this way to support CityScapes dataset. The script is in [cityscapes.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/convert_datasets/cityscapes.py) and we also provide the finetuning [configs](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes).

### Reorganize dataset to middle format

It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
Actually, we define a simple annotation format and all existing datasets are
processed to be compatible with it, either online or offline.

The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field `filename` (relative path), `width`, `height` for testing,
and an additional field `ann` for training. `ann` is also a dict containing at least 2 fields:
`bboxes` and `labels`, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use `bboxes_ignore` and `labels_ignore`
to cover them.

Here is an example.
```
[
    {
        'filename': 'a.jpg',
        'width': 1280,
        'height': 720,
        'ann': {
            'bboxes': <np.ndarray, float32> (n, 4),
            'labels': <np.ndarray, int64> (n, ),
            'bboxes_ignore': <np.ndarray, float32> (k, 4),
            'labels_ignore': <np.ndarray, int64> (k, ) (optional field)
        }
    },
    ...
]
```

There are two ways to work with custom datasets.

- online conversion

  You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods
  `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`,
  like [CocoDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py) and [VOCDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/voc.py).

- offline conversion

  You can convert the annotation format to the expected format above and save it to
  a pickle or json file, like [pascal_voc.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/convert_datasets/pascal_voc.py).
  Then you can simply use `CustomDataset`.

### An example of customized dataset

Assume the annotation is in a new format in text files.
The bounding boxes annotations are stored in text file `annotation.txt` as the following

```
#
000001.jpg
1280 720
2
10 20 40 60 1
20 40 50 60 2
#
000002.jpg
1280 720
3
50 20 40 60 2
20 40 30 45 2
30 40 50 60 3
```

We can create a new dataset in `mmdet/datasets/my_dataset.py` to load the data.

```python
import mmcv
import numpy as np

from .builder import DATASETS
from .custom import CustomDataset


@DATASETS.register_module()
class MyDataset(CustomDataset):

    CLASSES = ('person', 'bicycle', 'car', 'motorcycle')

    def load_annotations(self, ann_file):
        ann_list = mmcv.list_from_file(ann_file)

        data_infos = []
        for i, ann_line in enumerate(ann_list):
            if ann_line != '#':
                continue

            img_shape = ann_list[i + 2].split(' ')
            width = int(img_shape[0])
            height = int(img_shape[1])
            bbox_number = int(ann_list[i + 3])

            anns = ann_line.split(' ')
            bboxes = []
            labels = []
            for anns in ann_list[i + 4:i + 4 + bbox_number]:
                bboxes.append([float(ann) for ann in anns[:4]])
                labels.append(int(anns[4]))

            data_infos.append(
                dict(
                    filename=ann_list[i + 1],
                    width=width,
                    height=height,
                    ann=dict(
                        bboxes=np.array(bboxes).astype(np.float32),
                        labels=np.array(labels).astype(np.int64))
                ))

        return data_infos

    def get_ann_info(self, idx):
        return self.data_infos[idx]['ann']

```

Then in the config, to use `MyDataset` you can modify the config as the following

```python
dataset_A_train = dict(
    type='MyDataset',
    ann_file = 'image_list.txt',
    pipeline=train_pipeline
)
```

## Customize datasets by mixing dataset

MMDetection also supports to mix dataset for training.
Currently it supports to concat and repeat datasets.

### Repeat dataset

We use `RepeatDataset` as warpper to repeat the dataset. For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following
```python
dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )
```

### Concatemate dataset

There two ways to concatenate the dataset.

1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.

    ```python
    dataset_A_train = dict(
        type='Dataset_A',
        ann_file = ['anno_file_1', 'anno_file_2'],
        pipeline=train_pipeline
    )
    ```

2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

    ```python
    dataset_A_train = dict()
    dataset_B_train = dict()

    data = dict(
        imgs_per_gpu=2,
        workers_per_gpu=2,
        train = [
            dataset_A_train,
            dataset_B_train
        ],
        val = dataset_A_val,
        test = dataset_A_test
        )
    ```


A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following.

```python
dataset_A_train = dict(
    type='RepeatDataset',
    times=N,
    dataset=dict(
        type='Dataset_A',
        ...
        pipeline=train_pipeline
    )
)
dataset_A_val = dict(
    ...
    pipeline=test_pipeline
)
dataset_A_test = dict(
    ...
    pipeline=test_pipeline
)
dataset_B_train = dict(
    type='RepeatDataset',
    times=M,
    dataset=dict(
        type='Dataset_B',
        ...
        pipeline=train_pipeline
    )
)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train = [
        dataset_A_train,
        dataset_B_train
    ],
    val = dataset_A_val,
    test = dataset_A_test
)

```

### Modify classes of existing dataset

With existing dataset types, we can modify the class names of them to train subset of the dataset.
For example, if you want to train only three classes of the current dataset,
you can modify the classes of dataset.
The dataset will subtract subset of the data which contains at least one class in the `classes`.

```python
classes = ('person', 'bicycle', 'car')
data = dict(
    train=dict(classes=classes),
    val=dict(classes=classes),
    test=dict(classes=classes))
```

MMDetection V2.0 also supports to read the classes from a file, which is common in real applications.
For example, assume the `classes.txt` contains the name of classes as the following.

```
person
bicycle
car
```

Users can set the classes as a file path, the dataset will load it and convert it to a list automatically.
```python
classes = 'path/to/classes.txt'
data = dict(
    train=dict(classes=classes),
    val=dict(classes=classes),
    test=dict(classes=classes))
```