sunrgbd_dataset.py 4.71 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
2
from os import path as osp
liyinhao's avatar
liyinhao committed
3

liyinhao's avatar
liyinhao committed
4
from mmdet3d.core import show_result
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet3d.core.bbox import DepthInstance3DBoxes
liyinhao's avatar
liyinhao committed
6
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
7
from .custom_3d import Custom3DDataset
liyinhao's avatar
liyinhao committed
8
9
10


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
11
class SUNRGBDDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
12
    """SUNRGBD Dataset.
liyinhao's avatar
liyinhao committed
13

wangtai's avatar
wangtai committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    This class serves as the API for experiments on the SUNRGBD Dataset.

    Please refer to `<http://rgbd.cs.princeton.edu/challenge.html>`_for
    data downloading. It is recommended to symlink the dataset root to
    $MMDETECTION3D/data and organize them as the doc shows.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
liyinhao's avatar
liyinhao committed
42
43
44
45
    CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
46
                 data_root,
liyinhao's avatar
liyinhao committed
47
48
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
49
                 classes=None,
liyinhao's avatar
liyinhao committed
50
                 modality=None,
51
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
52
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
53
                 test_mode=False):
54
55
56
57
58
59
60
61
62
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
liyinhao's avatar
liyinhao committed
63

liyinhao's avatar
liyinhao committed
64
    def get_ann_info(self, index):
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: Standard annotation dictionary
                consists of the data information.

                - gt_bboxes_3d (:obj:``DepthInstance3DBoxes``):
                    3D ground truth bboxes
                - gt_labels_3d (np.ndarray): labels of ground truths
                - pts_instance_mask_path (str): path of instance masks
                - pts_semantic_mask_path (str): path of semantic masks
        """
liyinhao's avatar
liyinhao committed
80
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
81
        info = self.data_infos[index]
liyinhao's avatar
liyinhao committed
82
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
83
84
85
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
liyinhao's avatar
liyinhao committed
86
        else:
liyinhao's avatar
liyinhao committed
87
            gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32)
liyinhao's avatar
liyinhao committed
88
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
liyinhao's avatar
liyinhao committed
89

wuyuefeng's avatar
wuyuefeng committed
90
91
92
93
        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d, origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

liyinhao's avatar
liyinhao committed
94
        anns_results = dict(
liyinhao's avatar
liyinhao committed
95
            gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d)
liyinhao's avatar
liyinhao committed
96
        return anns_results
liyinhao's avatar
liyinhao committed
97
98

    def show(self, results, out_dir):
99
100
101
102
103
104
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
        """
liyinhao's avatar
liyinhao committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(
                osp.join(self.data_root, pts_path),
                dtype=np.float32).reshape(-1, 6)
            points[:, 3:] *= 255
            if data_info['annos']['gt_num'] > 0:
                gt_bboxes = data_info['annos']['gt_boxes_upright_depth']
            else:
                gt_bboxes = np.zeros((0, 7))
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)