dbsampler.py 10.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import copy
zhangwenwei's avatar
zhangwenwei committed
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import pickle

from mmdet3d.core.bbox import box_np_ops
from mmdet3d.datasets.pipelines import data_augment_utils
from ..registry import OBJECTSAMPLERS


class BatchSampler:

    def __init__(self,
                 sampled_list,
                 name=None,
                 epoch=None,
                 shuffle=True,
                 drop_reminder=False):
        self._sampled_list = sampled_list
        self._indices = np.arange(len(sampled_list))
        if shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0
        self._example_num = len(sampled_list)
        self._name = name
        self._shuffle = shuffle
        self._epoch = epoch
        self._epoch_counter = 0
        self._drop_reminder = drop_reminder

    def _sample(self, num):
        if self._idx + num >= self._example_num:
            ret = self._indices[self._idx:].copy()
            self._reset()
        else:
            ret = self._indices[self._idx:self._idx + num]
            self._idx += num
        return ret

    def _reset(self):
        assert self._name is not None
        # print("reset", self._name)
        if self._shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0

    def sample(self, num):
        indices = self._sample(num)
        return [self._sampled_list[i] for i in indices]


52
@OBJECTSAMPLERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
53
class DataBaseSampler(object):
54
55
56
57
58
59
60
61
62
63
    """Class for sampling data from the ground truth database.

    Args:
        info_path (str): Path of groundtruth database info.
        data_root (str): Path of groundtruth database.
        rate (float): Rate of actual sampled over maximum sampled number.
        prepare (dict): Name of preparation functions and the input value.
        sample_groups (dict): Sampled classes and numbers.
        classes (list[str]): List of classes. Default: None.
    """
zhangwenwei's avatar
zhangwenwei committed
64

zhangwenwei's avatar
zhangwenwei committed
65
66
67
68
69
70
71
    def __init__(self,
                 info_path,
                 data_root,
                 rate,
                 prepare,
                 sample_groups,
                 classes=None):
zhangwenwei's avatar
zhangwenwei committed
72
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
73
        self.data_root = data_root
zhangwenwei's avatar
zhangwenwei committed
74
75
76
        self.info_path = info_path
        self.rate = rate
        self.prepare = prepare
zhangwenwei's avatar
zhangwenwei committed
77
78
79
        self.classes = classes
        self.cat2label = {name: i for i, name in enumerate(classes)}
        self.label2cat = {i: name for i, name in enumerate(classes)}
zhangwenwei's avatar
zhangwenwei committed
80
81
82
83
84

        with open(info_path, 'rb') as f:
            db_infos = pickle.load(f)

        # filter database infos
zhangwenwei's avatar
zhangwenwei committed
85
        from mmdet3d.utils import get_root_logger
zhangwenwei's avatar
zhangwenwei committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        logger = get_root_logger()
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')
        for prep_func, val in prepare.items():
            db_infos = getattr(self, prep_func)(db_infos, val)
        logger.info('After filter database:')
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')

        self.db_infos = db_infos

        # load sample groups
        # TODO: more elegant way to load sample groups
        self.sample_groups = []
        for name, num in sample_groups.items():
            self.sample_groups.append({name: int(num)})

        self.group_db_infos = self.db_infos  # just use db_infos
        self.sample_classes = []
        self.sample_max_nums = []
        for group_info in self.sample_groups:
            self.sample_classes += list(group_info.keys())
            self.sample_max_nums += list(group_info.values())

        self.sampler_dict = {}
        for k, v in self.group_db_infos.items():
            self.sampler_dict[k] = BatchSampler(v, k, shuffle=True)
        # TODO: No group_sampling currently

    @staticmethod
    def filter_by_difficulty(db_infos, removed_difficulty):
117
118
119
120
121
122
123
124
125
        """Filter ground truths by difficulties.

        Args:
            db_infos (dict): Info of groundtruth database.
            removed_difficulty (list): Difficulties that are not qualified.

        Returns:
            dict: Info of database after filtering.
        """
zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
131
132
133
134
135
        new_db_infos = {}
        for key, dinfos in db_infos.items():
            new_db_infos[key] = [
                info for info in dinfos
                if info['difficulty'] not in removed_difficulty
            ]
        return new_db_infos

    @staticmethod
    def filter_by_min_points(db_infos, min_gt_points_dict):
136
137
138
139
140
141
142
143
144
145
        """Filter ground truths by number of points in the bbox.

        Args:
            db_infos (dict): Info of groundtruth database.
            min_gt_points_dict (dict): Different number of minimum points
                needed for different categories of ground truths.

        Returns:
            dict: Info of database after filtering.
        """
zhangwenwei's avatar
zhangwenwei committed
146
147
148
149
150
151
152
153
154
155
        for name, min_num in min_gt_points_dict.items():
            min_num = int(min_num)
            if min_num > 0:
                filtered_infos = []
                for info in db_infos[name]:
                    if info['num_points_in_gt'] >= min_num:
                        filtered_infos.append(info)
                db_infos[name] = filtered_infos
        return db_infos

zhangwenwei's avatar
zhangwenwei committed
156
    def sample_all(self, gt_bboxes, gt_labels, img=None):
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        """Sampling all categories of bboxes.

        Args:
            gt_bboxes (np.ndarray): Ground truth bounding boxes.
            gt_labels (np.ndarray): Labels of boxes.

        Returns:
            dict: Dict of sampled 'pseudo ground truths'.

                - gt_labels_3d (np.ndarray): labels of ground truths:
                    labels of sampled ground truths
                - gt_bboxes_3d (:obj:``BaseInstance3DBoxes``):
                    sampled 3D bounding boxes
                - points (np.ndarray): sampled points
                - group_ids (np.ndarray): ids of sampled ground truths
        """
zhangwenwei's avatar
zhangwenwei committed
173
174
175
176
        sampled_num_dict = {}
        sample_num_per_class = []
        for class_name, max_sample_num in zip(self.sample_classes,
                                              self.sample_max_nums):
zhangwenwei's avatar
zhangwenwei committed
177
178
179
            class_label = self.cat2label[class_name]
            # sampled_num = int(max_sample_num -
            #                   np.sum([n == class_name for n in gt_names]))
zhangwenwei's avatar
zhangwenwei committed
180
            sampled_num = int(max_sample_num -
zhangwenwei's avatar
zhangwenwei committed
181
                              np.sum([n == class_label for n in gt_labels]))
zhangwenwei's avatar
zhangwenwei committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            sampled_num = np.round(self.rate * sampled_num).astype(np.int64)
            sampled_num_dict[class_name] = sampled_num
            sample_num_per_class.append(sampled_num)

        sampled = []
        sampled_gt_bboxes = []
        avoid_coll_boxes = gt_bboxes

        for class_name, sampled_num in zip(self.sample_classes,
                                           sample_num_per_class):
            if sampled_num > 0:
                sampled_cls = self.sample_class_v2(class_name, sampled_num,
                                                   avoid_coll_boxes)

                sampled += sampled_cls
                if len(sampled_cls) > 0:
                    if len(sampled_cls) == 1:
                        sampled_gt_box = sampled_cls[0]['box3d_lidar'][
                            np.newaxis, ...]
                    else:
                        sampled_gt_box = np.stack(
                            [s['box3d_lidar'] for s in sampled_cls], axis=0)

                    sampled_gt_bboxes += [sampled_gt_box]
                    avoid_coll_boxes = np.concatenate(
                        [avoid_coll_boxes, sampled_gt_box], axis=0)

        ret = None
        if len(sampled) > 0:
            sampled_gt_bboxes = np.concatenate(sampled_gt_bboxes, axis=0)
            # center = sampled_gt_bboxes[:, 0:3]

zhangwenwei's avatar
zhangwenwei committed
214
            # num_sampled = len(sampled)
zhangwenwei's avatar
zhangwenwei committed
215
216
217
218
            s_points_list = []
            count = 0
            for info in sampled:
                file_path = os.path.join(
zhangwenwei's avatar
zhangwenwei committed
219
220
                    self.data_root,
                    info['path']) if self.data_root else info['path']
zhangwenwei's avatar
zhangwenwei committed
221
222
223
224
225
226
227
                s_points = np.fromfile(
                    file_path, dtype=np.float32).reshape([-1, 4])
                s_points[:, :3] += info['box3d_lidar'][:3]

                count += 1

                s_points_list.append(s_points)
zhangwenwei's avatar
zhangwenwei committed
228
229
230
            # gt_names = np.array([s['name'] for s in sampled]),
            # gt_labels = np.array([self.cat2label(s) for s in gt_names])
            gt_labels = np.array([self.cat2label[s['name']] for s in sampled])
zhangwenwei's avatar
zhangwenwei committed
231
            ret = {
zhangwenwei's avatar
zhangwenwei committed
232
233
                'gt_labels_3d':
                gt_labels,
zhangwenwei's avatar
zhangwenwei committed
234
235
236
237
238
239
240
241
242
243
244
245
                'gt_bboxes_3d':
                sampled_gt_bboxes,
                'points':
                np.concatenate(s_points_list, axis=0),
                'group_ids':
                np.arange(gt_bboxes.shape[0],
                          gt_bboxes.shape[0] + len(sampled))
            }

        return ret

    def sample_class_v2(self, name, num, gt_bboxes):
246
247
248
249
250
251
252
253
254
255
        """Sampling specific categories of bounding boxes.

        Args:
            name (str): Class of objects to be sampled.
            num (int): Number of sampled bboxes.
            gt_bboxes (np.ndarray): Ground truth boxes.

        Returns:
            list[dict]: Valid samples after collision test.
        """
zhangwenwei's avatar
zhangwenwei committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        sampled = self.sampler_dict[name].sample(num)
        sampled = copy.deepcopy(sampled)
        num_gt = gt_bboxes.shape[0]
        num_sampled = len(sampled)
        gt_bboxes_bv = box_np_ops.center_to_corner_box2d(
            gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6])

        sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0)
        boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy()

        sp_boxes_new = boxes[gt_bboxes.shape[0]:]
        sp_boxes_bv = box_np_ops.center_to_corner_box2d(
            sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6])

        total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0)
        coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv)
        diag = np.arange(total_bv.shape[0])
        coll_mat[diag, diag] = False

        valid_samples = []
        for i in range(num_gt, num_gt + num_sampled):
            if coll_mat[i].any():
                coll_mat[i] = False
                coll_mat[:, i] = False
            else:
                valid_samples.append(sampled[i - num_gt])
        return valid_samples