norm.py 5.38 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import torch
3
from mmengine.registry import MODELS
zhangwenwei's avatar
zhangwenwei committed
4
5
from torch import distributed as dist
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
6
from torch.autograd.function import Function
zhangwenwei's avatar
zhangwenwei committed
7

zhangwenwei's avatar
zhangwenwei committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class AllReduce(Function):

    @staticmethod
    def forward(ctx, input):
        input_list = [
            torch.zeros_like(input) for k in range(dist.get_world_size())
        ]
        # Use allgather instead of allreduce in-place operations is unreliable
        dist.all_gather(input_list, input, async_op=False)
        inputs = torch.stack(input_list, dim=0)
        return torch.sum(inputs, dim=0)

    @staticmethod
    def backward(ctx, grad_output):
        dist.all_reduce(grad_output, async_op=False)
        return grad_output


27
@MODELS.register_module('naiveSyncBN1d')
zhangwenwei's avatar
zhangwenwei committed
28
class NaiveSyncBatchNorm1d(nn.BatchNorm1d):
29
    """Synchronized Batch Normalization for 3D Tensors.
zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
34
35
36
37
38
39

    Note:
        This implementation is modified from
        https://github.com/facebookresearch/detectron2/

        `torch.nn.SyncBatchNorm` has known unknown bugs.
        It produces significantly worse AP (and sometimes goes NaN)
        when the batch size on each worker is quite different
        (e.g., when scale augmentation is used).
        In 3D detection, different workers has points of different shapes,
40
        which also cause instability.
zhangwenwei's avatar
zhangwenwei committed
41
42
43
44
45

        Use this implementation before `nn.SyncBatchNorm` is fixed.
        It is slower than `nn.SyncBatchNorm`.
    """

46
47
48
49
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
50
    def forward(self, input):
51
52
53
54
55
56
57
58
59
60
        """
        Args:
            input (tensor): Has shape (N, C) or (N, C, L), where N is
                the batch size, C is the number of features or
                channels, and L is the sequence length

        Returns:
            tensor: Has shape (N, C) or (N, C, L), has same shape
            as input.
        """
61
62
        assert input.dtype == torch.float32, \
            f'input should be in float32 type, got {input.dtype}'
63
64
65
        using_dist = dist.is_available() and dist.is_initialized()
        if (not using_dist) or dist.get_world_size() == 1 \
                or not self.training:
zhangwenwei's avatar
zhangwenwei committed
66
67
            return super().forward(input)
        assert input.shape[0] > 0, 'SyncBN does not support empty inputs'
68
69
70
71
        is_two_dim = input.dim() == 2
        if is_two_dim:
            input = input.unsqueeze(2)

zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2])
        meansqr = torch.mean(input * input, dim=[0, 2])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (
            mean.detach() - self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1)
        bias = bias.reshape(1, -1, 1)
90
91
92
93
        output = input * scale + bias
        if is_two_dim:
            output = output.squeeze(2)
        return output
zhangwenwei's avatar
zhangwenwei committed
94
95


96
@MODELS.register_module('naiveSyncBN2d')
zhangwenwei's avatar
zhangwenwei committed
97
class NaiveSyncBatchNorm2d(nn.BatchNorm2d):
98
    """Synchronized Batch Normalization for 4D Tensors.
zhangwenwei's avatar
zhangwenwei committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    Note:
        This implementation is modified from
        https://github.com/facebookresearch/detectron2/

        `torch.nn.SyncBatchNorm` has known unknown bugs.
        It produces significantly worse AP (and sometimes goes NaN)
        when the batch size on each worker is quite different
        (e.g., when scale augmentation is used).
        This phenomenon also occurs when the multi-modality feature fusion
        modules of multi-modality detectors use SyncBN.

        Use this implementation before `nn.SyncBatchNorm` is fixed.
        It is slower than `nn.SyncBatchNorm`.
    """

115
116
117
118
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
119
    def forward(self, input):
120
121
122
123
124
125
126
        """
        Args:
            Input (tensor): Feature has shape (N, C, H, W).

        Returns:
            tensor: Has shape (N, C, H, W), same shape as input.
        """
127
128
        assert input.dtype == torch.float32, \
            f'input should be in float32 type, got {input.dtype}'
129
130
131
132
        using_dist = dist.is_available() and dist.is_initialized()
        if (not using_dist) or \
                dist.get_world_size() == 1 or \
                not self.training:
zhangwenwei's avatar
zhangwenwei committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            return super().forward(input)

        assert input.shape[0] > 0, 'SyncBN does not support empty inputs'
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2, 3])
        meansqr = torch.mean(input * input, dim=[0, 2, 3])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (
            mean.detach() - self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1)
        return input * scale + bias