furthest_point_sample.py 2.37 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
wuyuefeng's avatar
wuyuefeng committed
2
3
4
5
6
7
8
9
10
import torch
from torch.autograd import Function

from . import furthest_point_sample_ext


class FurthestPointSampling(Function):
    """Furthest Point Sampling.

11
12
    Uses iterative furthest point sampling to select a set of features whose
    corresponding points have the furthest distance.
wuyuefeng's avatar
wuyuefeng committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    """

    @staticmethod
    def forward(ctx, points_xyz: torch.Tensor,
                num_points: int) -> torch.Tensor:
        """forward.

        Args:
            points_xyz (Tensor): (B, N, 3) where N > num_points.
            num_points (int): Number of points in the sampled set.

        Returns:
             Tensor: (B, num_points) indices of the sampled points.
        """
        assert points_xyz.is_contiguous()

29
        B, N = points_xyz.size()[:2]
wuyuefeng's avatar
wuyuefeng committed
30
31
32
33
34
35
36
37
38
39
40
41
42
        output = torch.cuda.IntTensor(B, num_points)
        temp = torch.cuda.FloatTensor(B, N).fill_(1e10)

        furthest_point_sample_ext.furthest_point_sampling_wrapper(
            B, N, num_points, points_xyz, temp, output)
        ctx.mark_non_differentiable(output)
        return output

    @staticmethod
    def backward(xyz, a=None):
        return None, None


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class FurthestPointSamplingWithDist(Function):
    """Furthest Point Sampling With Distance.

    Uses iterative furthest point sampling to select a set of features whose
    corresponding points have the furthest distance.
    """

    @staticmethod
    def forward(ctx, points_dist: torch.Tensor,
                num_points: int) -> torch.Tensor:
        """forward.

        Args:
            points_dist (Tensor): (B, N, N) Distance between each point pair.
            num_points (int): Number of points in the sampled set.

        Returns:
             Tensor: (B, num_points) indices of the sampled points.
        """
        assert points_dist.is_contiguous()

        B, N, _ = points_dist.size()
        output = points_dist.new_zeros([B, num_points], dtype=torch.int32)
        temp = points_dist.new_zeros([B, N]).fill_(1e10)

        furthest_point_sample_ext.furthest_point_sampling_with_dist_wrapper(
            B, N, num_points, points_dist, temp, output)
        ctx.mark_non_differentiable(output)
        return output

    @staticmethod
    def backward(xyz, a=None):
        return None, None


wuyuefeng's avatar
wuyuefeng committed
78
furthest_point_sample = FurthestPointSampling.apply
79
furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply