point_rcnn_roi_head.py 11.4 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
from torch.nn import functional as F

from mmdet3d.core import AssignResult
from mmdet3d.core.bbox import bbox3d2result, bbox3d2roi
from mmdet.core import build_assigner, build_sampler
from mmdet.models import HEADS
from ..builder import build_head, build_roi_extractor
from .base_3droi_head import Base3DRoIHead


@HEADS.register_module()
class PointRCNNRoIHead(Base3DRoIHead):
    """RoI head for PointRCNN.

    Args:
        bbox_head (dict): Config of bbox_head.
        point_roi_extractor (dict): Config of RoI extractor.
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
        depth_normalizer (float, optional): Normalize depth feature.
            Defaults to 70.0.
        init_cfg (dict, optional): Config of initialization. Defaults to None.
    """

    def __init__(self,
                 bbox_head,
                 point_roi_extractor,
                 train_cfg,
                 test_cfg,
                 depth_normalizer=70.0,
                 pretrained=None,
                 init_cfg=None):
        super(PointRCNNRoIHead, self).__init__(
            bbox_head=bbox_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
            init_cfg=init_cfg)
        self.depth_normalizer = depth_normalizer

        if point_roi_extractor is not None:
            self.point_roi_extractor = build_roi_extractor(point_roi_extractor)

        self.init_assigner_sampler()

    def init_bbox_head(self, bbox_head):
        """Initialize box head.

        Args:
            bbox_head (dict): Config dict of RoI Head.
        """
        self.bbox_head = build_head(bbox_head)

    def init_mask_head(self):
        """Initialize maek head."""
        pass

    def init_assigner_sampler(self):
        """Initialize assigner and sampler."""
        self.bbox_assigner = None
        self.bbox_sampler = None
        if self.train_cfg:
            if isinstance(self.train_cfg.assigner, dict):
                self.bbox_assigner = build_assigner(self.train_cfg.assigner)
            elif isinstance(self.train_cfg.assigner, list):
                self.bbox_assigner = [
                    build_assigner(res) for res in self.train_cfg.assigner
                ]
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)

    def forward_train(self, feats_dict, input_metas, proposal_list,
                      gt_bboxes_3d, gt_labels_3d):
        """Training forward function of PointRCNNRoIHead.

        Args:
            feats_dict (dict): Contains features from the first stage.
            imput_metas (list[dict]): Meta info of each input.
            proposal_list (list[dict]): Proposal information from rpn.
                The dictionary should contain the following keys:

                - boxes_3d (:obj:`BaseInstance3DBoxes`): Proposal bboxes
                - labels_3d (torch.Tensor): Labels of proposals
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]):
                GT bboxes of each sample. The bboxes are encapsulated
                by 3D box structures.
            gt_labels_3d (list[LongTensor]): GT labels of each sample.

        Returns:
            dict: Losses from RoI RCNN head.
                - loss_bbox (torch.Tensor): Loss of bboxes
        """
        features = feats_dict['features']
        points = feats_dict['points']
        point_cls_preds = feats_dict['points_cls_preds']
        sem_scores = point_cls_preds.sigmoid()
        point_scores = sem_scores.max(-1)[0]

        sample_results = self._assign_and_sample(proposal_list, gt_bboxes_3d,
                                                 gt_labels_3d)

        # concat the depth, semantic features and backbone features
        features = features.transpose(1, 2).contiguous()
        point_depths = points.norm(dim=2) / self.depth_normalizer - 0.5
        features_list = [
            point_scores.unsqueeze(2),
            point_depths.unsqueeze(2), features
        ]
        features = torch.cat(features_list, dim=2)

        bbox_results = self._bbox_forward_train(features, points,
                                                sample_results)
        losses = dict()
        losses.update(bbox_results['loss_bbox'])

        return losses

    def simple_test(self, feats_dict, img_metas, proposal_list, **kwargs):
        """Simple testing forward function of PointRCNNRoIHead.

        Note:
            This function assumes that the batch size is 1

        Args:
            feats_dict (dict): Contains features from the first stage.
            img_metas (list[dict]): Meta info of each image.
            proposal_list (list[dict]): Proposal information from rpn.

        Returns:
            dict: Bbox results of one frame.
        """
        rois = bbox3d2roi([res['boxes_3d'].tensor for res in proposal_list])
        labels_3d = [res['labels_3d'] for res in proposal_list]

        features = feats_dict['features']
        points = feats_dict['points']
        point_cls_preds = feats_dict['points_cls_preds']
        sem_scores = point_cls_preds.sigmoid()
        point_scores = sem_scores.max(-1)[0]

        features = features.transpose(1, 2).contiguous()
        point_depths = points.norm(dim=2) / self.depth_normalizer - 0.5
        features_list = [
            point_scores.unsqueeze(2),
            point_depths.unsqueeze(2), features
        ]

        features = torch.cat(features_list, dim=2)
        batch_size = features.shape[0]
        bbox_results = self._bbox_forward(features, points, batch_size, rois)
        object_score = bbox_results['cls_score'].sigmoid()
        bbox_list = self.bbox_head.get_bboxes(
            rois,
            object_score,
            bbox_results['bbox_pred'],
            labels_3d,
            img_metas,
            cfg=self.test_cfg)

        bbox_results = [
            bbox3d2result(bboxes, scores, labels)
            for bboxes, scores, labels in bbox_list
        ]
        return bbox_results

    def _bbox_forward_train(self, features, points, sampling_results):
        """Forward training function of roi_extractor and bbox_head.

        Args:
            features (torch.Tensor): Backbone features with depth and \
                semantic features.
            points (torch.Tensor): Pointcloud.
            sampling_results (:obj:`SamplingResult`): Sampled results used
                for training.

        Returns:
            dict: Forward results including losses and predictions.
        """
        rois = bbox3d2roi([res.bboxes for res in sampling_results])
        batch_size = features.shape[0]
        bbox_results = self._bbox_forward(features, points, batch_size, rois)
        bbox_targets = self.bbox_head.get_targets(sampling_results,
                                                  self.train_cfg)

        loss_bbox = self.bbox_head.loss(bbox_results['cls_score'],
                                        bbox_results['bbox_pred'], rois,
                                        *bbox_targets)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results

    def _bbox_forward(self, features, points, batch_size, rois):
        """Forward function of roi_extractor and bbox_head used in both
        training and testing.

        Args:
            features (torch.Tensor): Backbone features with depth and
                semantic features.
            points (torch.Tensor): Pointcloud.
            batch_size (int): Batch size.
            rois (torch.Tensor): RoI boxes.

        Returns:
            dict: Contains predictions of bbox_head and
                features of roi_extractor.
        """
        pooled_point_feats = self.point_roi_extractor(features, points,
                                                      batch_size, rois)

        cls_score, bbox_pred = self.bbox_head(pooled_point_feats)
        bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred)
        return bbox_results

    def _assign_and_sample(self, proposal_list, gt_bboxes_3d, gt_labels_3d):
        """Assign and sample proposals for training.

        Args:
            proposal_list (list[dict]): Proposals produced by RPN.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
                boxes.
            gt_labels_3d (list[torch.Tensor]): Ground truth labels

        Returns:
            list[:obj:`SamplingResult`]: Sampled results of each training
                sample.
        """
        sampling_results = []
        # bbox assign
        for batch_idx in range(len(proposal_list)):
            cur_proposal_list = proposal_list[batch_idx]
            cur_boxes = cur_proposal_list['boxes_3d']
            cur_labels_3d = cur_proposal_list['labels_3d']
            cur_gt_bboxes = gt_bboxes_3d[batch_idx].to(cur_boxes.device)
            cur_gt_labels = gt_labels_3d[batch_idx]
            batch_num_gts = 0
            # 0 is bg
            batch_gt_indis = cur_gt_labels.new_full((len(cur_boxes), ), 0)
            batch_max_overlaps = cur_boxes.tensor.new_zeros(len(cur_boxes))
            # -1 is bg
            batch_gt_labels = cur_gt_labels.new_full((len(cur_boxes), ), -1)

            # each class may have its own assigner
            if isinstance(self.bbox_assigner, list):
                for i, assigner in enumerate(self.bbox_assigner):
                    gt_per_cls = (cur_gt_labels == i)
                    pred_per_cls = (cur_labels_3d == i)
                    cur_assign_res = assigner.assign(
                        cur_boxes.tensor[pred_per_cls],
                        cur_gt_bboxes.tensor[gt_per_cls],
                        gt_labels=cur_gt_labels[gt_per_cls])
                    # gather assign_results in different class into one result
                    batch_num_gts += cur_assign_res.num_gts
                    # gt inds (1-based)
                    gt_inds_arange_pad = gt_per_cls.nonzero(
                        as_tuple=False).view(-1) + 1
                    # pad 0 for indice unassigned
                    gt_inds_arange_pad = F.pad(
                        gt_inds_arange_pad, (1, 0), mode='constant', value=0)
                    # pad -1 for indice ignore
                    gt_inds_arange_pad = F.pad(
                        gt_inds_arange_pad, (1, 0), mode='constant', value=-1)
                    # convert to 0~gt_num+2 for indices
                    gt_inds_arange_pad += 1
                    # now 0 is bg, >1 is fg in batch_gt_indis
                    batch_gt_indis[pred_per_cls] = gt_inds_arange_pad[
                        cur_assign_res.gt_inds + 1] - 1
                    batch_max_overlaps[
                        pred_per_cls] = cur_assign_res.max_overlaps
                    batch_gt_labels[pred_per_cls] = cur_assign_res.labels

                assign_result = AssignResult(batch_num_gts, batch_gt_indis,
                                             batch_max_overlaps,
                                             batch_gt_labels)
            else:  # for single class
                assign_result = self.bbox_assigner.assign(
                    cur_boxes.tensor,
                    cur_gt_bboxes.tensor,
                    gt_labels=cur_gt_labels)

            # sample boxes
            sampling_result = self.bbox_sampler.sample(assign_result,
                                                       cur_boxes.tensor,
                                                       cur_gt_bboxes.tensor,
                                                       cur_gt_labels)
            sampling_results.append(sampling_result)
        return sampling_results