monoflex_head.py 34.4 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
ChaimZhu's avatar
ChaimZhu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
import torch
from mmcv.cnn import xavier_init
from torch import nn as nn

from mmdet3d.core.utils import get_ellip_gaussian_2D
from mmdet3d.models.model_utils import EdgeFusionModule
from mmdet3d.models.utils import (filter_outside_objs, get_edge_indices,
                                  get_keypoints, handle_proj_objs)
from mmdet.core import multi_apply
from mmdet.core.bbox.builder import build_bbox_coder
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.utils import gaussian_radius, gen_gaussian_target
from mmdet.models.utils.gaussian_target import (get_local_maximum,
                                                get_topk_from_heatmap,
                                                transpose_and_gather_feat)
from .anchor_free_mono3d_head import AnchorFreeMono3DHead


@HEADS.register_module()
class MonoFlexHead(AnchorFreeMono3DHead):
    r"""MonoFlex head used in `MonoFlex <https://arxiv.org/abs/2104.02323>`_

    .. code-block:: none

                / --> 3 x 3 conv --> 1 x 1 conv --> [edge fusion] --> cls
                |
                | --> 3 x 3 conv --> 1 x 1 conv --> 2d bbox
                |
                | --> 3 x 3 conv --> 1 x 1 conv --> [edge fusion] --> 2d offsets
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->  keypoints offsets
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->  keypoints uncertainty
        feature
                | --> 3 x 3 conv --> 1 x 1 conv -->  keypoints uncertainty
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->   3d dimensions
                |
                |                  |--- 1 x 1 conv -->  ori cls
                | --> 3 x 3 conv --|
                |                  |--- 1 x 1 conv -->  ori offsets
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->  depth
                |
                \ --> 3 x 3 conv --> 1 x 1 conv -->  depth uncertainty

    Args:
        use_edge_fusion (bool): Whether to use edge fusion module while
            feature extraction.
        edge_fusion_inds (list[tuple]): Indices of feature to use edge fusion.
        edge_heatmap_ratio (float): Ratio of generating target heatmap.
        filter_outside_objs (bool, optional): Whether to filter the
            outside objects. Default: True.
        loss_cls (dict, optional): Config of classification loss.
            Default: loss_cls=dict(type='GaussionFocalLoss', loss_weight=1.0).
        loss_bbox (dict, optional): Config of localization loss.
            Default: loss_bbox=dict(type='IOULoss', loss_weight=10.0).
        loss_dir (dict, optional): Config of direction classification loss.
            Default: dict(type='MultibinLoss', loss_weight=0.1).
        loss_keypoints (dict, optional): Config of keypoints loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_dims: (dict, optional): Config of dimensions loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_offsets2d: (dict, optional): Config of offsets2d loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_direct_depth: (dict, optional): Config of directly regression depth loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_keypoints_depth: (dict, optional): Config of keypoints decoded depth loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_combined_depth: (dict, optional): Config of combined depth loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_attr (dict, optional): Config of attribute classification loss.
            In MonoFlex, Default: None.
        bbox_coder (dict, optional): Bbox coder for encoding and decoding boxes.
            Default: dict(type='MonoFlexCoder', code_size=7).
        norm_cfg (dict, optional): Dictionary to construct and config norm layer.
            Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
        init_cfg (dict): Initialization config dict. Default: None.
    """  # noqa: E501

    def __init__(self,
                 num_classes,
                 in_channels,
                 use_edge_fusion,
                 edge_fusion_inds,
                 edge_heatmap_ratio,
                 filter_outside_objs=True,
                 loss_cls=dict(type='GaussianFocalLoss', loss_weight=1.0),
                 loss_bbox=dict(type='IoULoss', loss_weight=0.1),
                 loss_dir=dict(type='MultiBinLoss', loss_weight=0.1),
                 loss_keypoints=dict(type='L1Loss', loss_weight=0.1),
                 loss_dims=dict(type='L1Loss', loss_weight=0.1),
                 loss_offsets2d=dict(type='L1Loss', loss_weight=0.1),
                 loss_direct_depth=dict(type='L1Loss', loss_weight=0.1),
                 loss_keypoints_depth=dict(type='L1Loss', loss_weight=0.1),
                 loss_combined_depth=dict(type='L1Loss', loss_weight=0.1),
                 loss_attr=None,
                 bbox_coder=dict(type='MonoFlexCoder', code_size=7),
                 norm_cfg=dict(type='BN'),
                 init_cfg=None,
                 init_bias=-2.19,
                 **kwargs):
        self.use_edge_fusion = use_edge_fusion
        self.edge_fusion_inds = edge_fusion_inds
        super().__init__(
            num_classes,
            in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_dir=loss_dir,
            loss_attr=loss_attr,
            norm_cfg=norm_cfg,
            init_cfg=init_cfg,
            **kwargs)
        self.filter_outside_objs = filter_outside_objs
        self.edge_heatmap_ratio = edge_heatmap_ratio
        self.init_bias = init_bias
        self.loss_dir = build_loss(loss_dir)
        self.loss_keypoints = build_loss(loss_keypoints)
        self.loss_dims = build_loss(loss_dims)
        self.loss_offsets2d = build_loss(loss_offsets2d)
        self.loss_direct_depth = build_loss(loss_direct_depth)
        self.loss_keypoints_depth = build_loss(loss_keypoints_depth)
        self.loss_combined_depth = build_loss(loss_combined_depth)
        self.bbox_coder = build_bbox_coder(bbox_coder)

    def _init_edge_module(self):
        """Initialize edge fusion module for feature extraction."""
        self.edge_fuse_cls = EdgeFusionModule(self.num_classes, 256)
        for i in range(len(self.edge_fusion_inds)):
            reg_inds, out_inds = self.edge_fusion_inds[i]
            out_channels = self.group_reg_dims[reg_inds][out_inds]
            fusion_layer = EdgeFusionModule(out_channels, 256)
            layer_name = f'edge_fuse_reg_{reg_inds}_{out_inds}'
            self.add_module(layer_name, fusion_layer)

    def init_weights(self):
        """Initialize weights."""
        super().init_weights()
        self.conv_cls.bias.data.fill_(self.init_bias)
        xavier_init(self.conv_regs[4][0], gain=0.01)
        xavier_init(self.conv_regs[7][0], gain=0.01)
        for m in self.conv_regs.modules():
            if isinstance(m, nn.Conv2d):
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _init_predictor(self):
        """Initialize predictor layers of the head."""
        self.conv_cls_prev = self._init_branch(
            conv_channels=self.cls_branch,
            conv_strides=(1, ) * len(self.cls_branch))
        self.conv_cls = nn.Conv2d(self.cls_branch[-1], self.cls_out_channels,
                                  1)
        # init regression head
        self.conv_reg_prevs = nn.ModuleList()
        # init output head
        self.conv_regs = nn.ModuleList()
        # group_reg_dims:
        # ((4, ), (2, ), (20, ), (3, ), (3, ), (8, 8), (1, ), (1, ))
        for i in range(len(self.group_reg_dims)):
            reg_dims = self.group_reg_dims[i]
            reg_branch_channels = self.reg_branch[i]
            out_channel = self.out_channels[i]
            reg_list = nn.ModuleList()
            if len(reg_branch_channels) > 0:
                self.conv_reg_prevs.append(
                    self._init_branch(
                        conv_channels=reg_branch_channels,
                        conv_strides=(1, ) * len(reg_branch_channels)))
                for reg_dim in reg_dims:
                    reg_list.append(nn.Conv2d(out_channel, reg_dim, 1))
                self.conv_regs.append(reg_list)
            else:
                self.conv_reg_prevs.append(None)
                for reg_dim in reg_dims:
                    reg_list.append(nn.Conv2d(self.feat_channels, reg_dim, 1))
                self.conv_regs.append(reg_list)

    def _init_layers(self):
        """Initialize layers of the head."""
        self._init_predictor()
        if self.use_edge_fusion:
            self._init_edge_module()

    def forward_train(self, x, input_metas, gt_bboxes, gt_labels, gt_bboxes_3d,
                      gt_labels_3d, centers2d, depths, attr_labels,
                      gt_bboxes_ignore, proposal_cfg, **kwargs):
        """
        Args:
            x (list[Tensor]): Features from FPN.
            input_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes (list[Tensor]): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_labels (list[Tensor]): Ground truth labels of each box,
                shape (num_gts,).
            gt_bboxes_3d (list[Tensor]): 3D ground truth bboxes of the image,
                shape (num_gts, self.bbox_code_size).
            gt_labels_3d (list[Tensor]): 3D ground truth labels of each box,
                shape (num_gts,).
            centers2d (list[Tensor]): Projected 3D center of each box,
                shape (num_gts, 2).
            depths (list[Tensor]): Depth of projected 3D center of each box,
                shape (num_gts,).
            attr_labels (list[Tensor]): Attribute labels of each box,
                shape (num_gts,).
            gt_bboxes_ignore (list[Tensor]): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            proposal_cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used
        Returns:
            tuple:
                losses: (dict[str, Tensor]): A dictionary of loss components.
                proposal_list (list[Tensor]): Proposals of each image.
        """
        outs = self(x, input_metas)
        if gt_labels is None:
            loss_inputs = outs + (gt_bboxes, gt_bboxes_3d, centers2d, depths,
                                  attr_labels, input_metas)
        else:
            loss_inputs = outs + (gt_bboxes, gt_labels, gt_bboxes_3d,
                                  gt_labels_3d, centers2d, depths, attr_labels,
                                  input_metas)
        losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        if proposal_cfg is None:
            return losses
        else:
            proposal_list = self.get_bboxes(
                *outs, input_metas, cfg=proposal_cfg)
            return losses, proposal_list

    def forward(self, feats, input_metas):
        """Forward features from the upstream network.

        Args:
            feats (list[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            input_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Box scores for each scale level,
                    each is a 4D-tensor, the channel number is
                    num_points * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for each scale
                    level, each is a 4D-tensor, the channel number is
                    num_points * bbox_code_size.
        """
        mlvl_input_metas = [input_metas for i in range(len(feats))]
        return multi_apply(self.forward_single, feats, mlvl_input_metas)

    def forward_single(self, x, input_metas):
        """Forward features of a single scale level.

        Args:
            x (Tensor): Feature maps from a specific FPN feature level.
            input_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.

        Returns:
            tuple: Scores for each class, bbox predictions.
        """
        img_h, img_w = input_metas[0]['pad_shape'][:2]
        batch_size, _, feat_h, feat_w = x.shape
        downsample_ratio = img_h / feat_h

        for conv_cls_prev_layer in self.conv_cls_prev:
            cls_feat = conv_cls_prev_layer(x)
        out_cls = self.conv_cls(cls_feat)

        if self.use_edge_fusion:
            # calculate the edge indices for the batch data
            edge_indices_list = get_edge_indices(
                input_metas, downsample_ratio, device=x.device)
            edge_lens = [
                edge_indices.shape[0] for edge_indices in edge_indices_list
            ]
            max_edge_len = max(edge_lens)
            edge_indices = x.new_zeros((batch_size, max_edge_len, 2),
                                       dtype=torch.long)
            for i in range(batch_size):
                edge_indices[i, :edge_lens[i]] = edge_indices_list[i]
            # cls feature map edge fusion
            out_cls = self.edge_fuse_cls(cls_feat, out_cls, edge_indices,
                                         edge_lens, feat_h, feat_w)

        bbox_pred = []

        for i in range(len(self.group_reg_dims)):
            reg_feat = x.clone()
            # feature regression head
            if len(self.reg_branch[i]) > 0:
                for conv_reg_prev_layer in self.conv_reg_prevs[i]:
                    reg_feat = conv_reg_prev_layer(reg_feat)

            for j, conv_reg in enumerate(self.conv_regs[i]):
                out_reg = conv_reg(reg_feat)
                #  Use Edge Fusion Module
                if self.use_edge_fusion and (i, j) in self.edge_fusion_inds:
                    # reg feature map edge fusion
                    out_reg = getattr(self, 'edge_fuse_reg_{}_{}'.format(
                        i, j))(reg_feat, out_reg, edge_indices, edge_lens,
                               feat_h, feat_w)
                bbox_pred.append(out_reg)

        bbox_pred = torch.cat(bbox_pred, dim=1)
        cls_score = out_cls.sigmoid()  # turn to 0-1
        cls_score = cls_score.clamp(min=1e-4, max=1 - 1e-4)

        return cls_score, bbox_pred

    def get_bboxes(self, cls_scores, bbox_preds, input_metas):
        """Generate bboxes from bbox head predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level.
            bbox_preds (list[Tensor]): Box regression for each scale.
            input_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
        Returns:
            list[tuple[:obj:`CameraInstance3DBoxes`, Tensor, Tensor, None]]:
                Each item in result_list is 4-tuple.
        """
        assert len(cls_scores) == len(bbox_preds) == 1
        cam2imgs = torch.stack([
            cls_scores[0].new_tensor(input_meta['cam2img'])
            for input_meta in input_metas
        ])
        batch_bboxes, batch_scores, batch_topk_labels = self.decode_heatmap(
            cls_scores[0],
            bbox_preds[0],
            input_metas,
            cam2imgs=cam2imgs,
            topk=100,
            kernel=3)

        result_list = []
        for img_id in range(len(input_metas)):

            bboxes = batch_bboxes[img_id]
            scores = batch_scores[img_id]
            labels = batch_topk_labels[img_id]

            keep_idx = scores > 0.25
            bboxes = bboxes[keep_idx]
            scores = scores[keep_idx]
            labels = labels[keep_idx]

            bboxes = input_metas[img_id]['box_type_3d'](
                bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5))
            attrs = None
            result_list.append((bboxes, scores, labels, attrs))

        return result_list

    def decode_heatmap(self,
                       cls_score,
                       reg_pred,
                       input_metas,
                       cam2imgs,
                       topk=100,
                       kernel=3):
        """Transform outputs into detections raw bbox predictions.

        Args:
            class_score (Tensor): Center predict heatmap,
                shape (B, num_classes, H, W).
            reg_pred (Tensor): Box regression map.
                shape (B, channel, H , W).
            input_metas (List[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            cam2imgs (Tensor): Camera intrinsic matrix.
                shape (N, 4, 4)
            topk (int, optional): Get top k center keypoints from heatmap.
                Default 100.
            kernel (int, optional): Max pooling kernel for extract local
                maximum pixels. Default 3.

        Returns:
            tuple[torch.Tensor]: Decoded output of SMOKEHead, containing
               the following Tensors:
              - batch_bboxes (Tensor): Coords of each 3D box.
                    shape (B, k, 7)
              - batch_scores (Tensor): Scores of each 3D box.
                    shape (B, k)
              - batch_topk_labels (Tensor): Categories of each 3D box.
                    shape (B, k)
        """
        img_h, img_w = input_metas[0]['pad_shape'][:2]
        batch_size, _, feat_h, feat_w = cls_score.shape

        downsample_ratio = img_h / feat_h
        center_heatmap_pred = get_local_maximum(cls_score, kernel=kernel)

        *batch_dets, topk_ys, topk_xs = get_topk_from_heatmap(
            center_heatmap_pred, k=topk)
        batch_scores, batch_index, batch_topk_labels = batch_dets

        regression = transpose_and_gather_feat(reg_pred, batch_index)
        regression = regression.view(-1, 8)

        pred_base_centers2d = torch.cat(
            [topk_xs.view(-1, 1),
             topk_ys.view(-1, 1).float()], dim=1)
        preds = self.bbox_coder.decode(regression, batch_topk_labels,
                                       downsample_ratio, cam2imgs)
        pred_locations = self.bbox_coder.decode_location(
            pred_base_centers2d, preds['offsets2d'], preds['combined_depth'],
            cam2imgs, downsample_ratio)
        pred_yaws = self.bbox_coder.decode_orientation(
            preds['orientations']).unsqueeze(-1)
        pred_dims = preds['dimensions']
        batch_bboxes = torch.cat((pred_locations, pred_dims, pred_yaws), dim=1)
        batch_bboxes = batch_bboxes.view(batch_size, -1, self.bbox_code_size)
        return batch_bboxes, batch_scores, batch_topk_labels

    def get_predictions(self, pred_reg, labels3d, centers2d, reg_mask,
                        batch_indices, input_metas, downsample_ratio):
        """Prepare predictions for computing loss.

        Args:
            pred_reg (Tensor): Box regression map.
                shape (B, channel, H , W).
            labels3d (Tensor): Labels of each 3D box.
                shape (B * max_objs, )
            centers2d (Tensor): Coords of each projected 3D box
                center on image. shape (N, 2)
            reg_mask (Tensor): Indexes of the existence of the 3D box.
                shape (B * max_objs, )
            batch_indices (Tenosr): Batch indices of the 3D box.
                shape (N, 3)
            input_metas (list[dict]): Meta information of each image,
                e.g., image size, scaling factor, etc.
            downsample_ratio (int): The stride of feature map.

        Returns:
            dict: The predictions for computing loss.
        """
        batch, channel = pred_reg.shape[0], pred_reg.shape[1]
        w = pred_reg.shape[3]
        cam2imgs = torch.stack([
            centers2d.new_tensor(input_meta['cam2img'])
            for input_meta in input_metas
        ])
        # (batch_size, 4, 4) -> (N, 4, 4)
        cam2imgs = cam2imgs[batch_indices, :, :]
        centers2d_inds = centers2d[:, 1] * w + centers2d[:, 0]
        centers2d_inds = centers2d_inds.view(batch, -1)
        pred_regression = transpose_and_gather_feat(pred_reg, centers2d_inds)
        pred_regression_pois = pred_regression.view(-1, channel)[reg_mask]
        preds = self.bbox_coder.decode(pred_regression_pois, labels3d,
                                       downsample_ratio, cam2imgs)

        return preds

    def get_targets(self, gt_bboxes_list, gt_labels_list, gt_bboxes_3d_list,
                    gt_labels_3d_list, centers2d_list, depths_list, feat_shape,
                    img_shape, input_metas):
        """Get training targets for batch images.
``
        Args:
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each
                image, shape (num_gt, 4).
            gt_labels_list (list[Tensor]): Ground truth labels of each
                box, shape (num_gt,).
            gt_bboxes_3d_list (list[:obj:`CameraInstance3DBoxes`]): 3D
                Ground truth bboxes of each image,
                shape (num_gt, bbox_code_size).
            gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of
                each box, shape (num_gt,).
            centers2d_list (list[Tensor]): Projected 3D centers onto 2D
                image, shape (num_gt, 2).
            depths_list (list[Tensor]): Depth of projected 3D centers onto 2D
                image, each has shape (num_gt, 1).
            feat_shape (tuple[int]): Feature map shape with value,
                shape (B, _, H, W).
            img_shape (tuple[int]): Image shape in [h, w] format.
            input_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.

        Returns:
            tuple[Tensor, dict]: The Tensor value is the targets of
                center heatmap, the dict has components below:
              - base_centers2d_target (Tensor): Coords of each projected 3D box
                    center on image. shape (B * max_objs, 2), [dtype: int]
              - labels3d (Tensor): Labels of each 3D box.
                    shape (N, )
              - reg_mask (Tensor): Mask of the existence of the 3D box.
                    shape (B * max_objs, )
              - batch_indices (Tensor): Batch id of the 3D box.
                    shape (N, )
              - depth_target (Tensor): Depth target of each 3D box.
                    shape (N, )
              - keypoints2d_target (Tensor): Keypoints of each projected 3D box
                    on image. shape (N, 10, 2)
              - keypoints_mask (Tensor): Keypoints mask of each projected 3D
                    box on image. shape (N, 10)
              - keypoints_depth_mask (Tensor): Depths decoded from keypoints
                    of each 3D box. shape (N, 3)
              - orientations_target (Tensor): Orientation (encoded local yaw)
                    target of each 3D box. shape (N, )
              - offsets2d_target (Tensor): Offsets target of each projected
                    3D box. shape (N, 2)
              - dimensions_target (Tensor): Dimensions target of each 3D box.
                    shape (N, 3)
              - downsample_ratio (int): The stride of feature map.
        """

        img_h, img_w = img_shape[:2]
        batch_size, _, feat_h, feat_w = feat_shape

        width_ratio = float(feat_w / img_w)  # 1/4
        height_ratio = float(feat_h / img_h)  # 1/4

        assert width_ratio == height_ratio

        # Whether to filter the objects which are not in FOV.
        if self.filter_outside_objs:
            filter_outside_objs(gt_bboxes_list, gt_labels_list,
                                gt_bboxes_3d_list, gt_labels_3d_list,
                                centers2d_list, input_metas)

        # transform centers2d to base centers2d for regression and
        # heatmap generation.
        # centers2d = int(base_centers2d) + offsets2d
        base_centers2d_list, offsets2d_list, trunc_mask_list = \
            handle_proj_objs(centers2d_list, gt_bboxes_list, input_metas)

        keypoints2d_list, keypoints_mask_list, keypoints_depth_mask_list = \
            get_keypoints(gt_bboxes_3d_list, centers2d_list, input_metas)

        center_heatmap_target = gt_bboxes_list[-1].new_zeros(
            [batch_size, self.num_classes, feat_h, feat_w])

        for batch_id in range(batch_size):
            # project gt_bboxes from input image to feat map
            gt_bboxes = gt_bboxes_list[batch_id] * width_ratio
            gt_labels = gt_labels_list[batch_id]

            # project base centers2d from input image to feat map
            gt_base_centers2d = base_centers2d_list[batch_id] * width_ratio
            trunc_masks = trunc_mask_list[batch_id]

            for j, base_center2d in enumerate(gt_base_centers2d):
                if trunc_masks[j]:
                    # for outside objects, generate ellipse heatmap
                    base_center2d_x_int, base_center2d_y_int = \
                        base_center2d.int()
                    scale_box_w = min(base_center2d_x_int - gt_bboxes[j][0],
                                      gt_bboxes[j][2] - base_center2d_x_int)
                    scale_box_h = min(base_center2d_y_int - gt_bboxes[j][1],
                                      gt_bboxes[j][3] - base_center2d_y_int)
                    radius_x = scale_box_w * self.edge_heatmap_ratio
                    radius_y = scale_box_h * self.edge_heatmap_ratio
                    radius_x, radius_y = max(0, int(radius_x)), max(
                        0, int(radius_y))
                    assert min(radius_x, radius_y) == 0
                    ind = gt_labels[j]
                    get_ellip_gaussian_2D(
                        center_heatmap_target[batch_id, ind],
                        [base_center2d_x_int, base_center2d_y_int], radius_x,
                        radius_y)
                else:
                    base_center2d_x_int, base_center2d_y_int = \
                        base_center2d.int()
                    scale_box_h = (gt_bboxes[j][3] - gt_bboxes[j][1])
                    scale_box_w = (gt_bboxes[j][2] - gt_bboxes[j][0])
                    radius = gaussian_radius([scale_box_h, scale_box_w],
                                             min_overlap=0.7)
                    radius = max(0, int(radius))
                    ind = gt_labels[j]
                    gen_gaussian_target(
                        center_heatmap_target[batch_id, ind],
                        [base_center2d_x_int, base_center2d_y_int], radius)

        avg_factor = max(1, center_heatmap_target.eq(1).sum())
        num_ctrs = [centers2d.shape[0] for centers2d in centers2d_list]
        max_objs = max(num_ctrs)
        batch_indices = [
            centers2d_list[0].new_full((num_ctrs[i], ), i)
            for i in range(batch_size)
        ]
        batch_indices = torch.cat(batch_indices, dim=0)
        reg_mask = torch.zeros(
            (batch_size, max_objs),
            dtype=torch.bool).to(base_centers2d_list[0].device)
        gt_bboxes_3d = input_metas['box_type_3d'].cat(gt_bboxes_3d_list)
        gt_bboxes_3d = gt_bboxes_3d.to(base_centers2d_list[0].device)

        # encode original local yaw to multibin format
        orienations_target = self.bbox_coder.encode(gt_bboxes_3d)

        batch_base_centers2d = base_centers2d_list[0].new_zeros(
            (batch_size, max_objs, 2))

        for i in range(batch_size):
            reg_mask[i, :num_ctrs[i]] = 1
            batch_base_centers2d[i, :num_ctrs[i]] = base_centers2d_list[i]

        flatten_reg_mask = reg_mask.flatten()

        # transform base centers2d from input scale to output scale
        batch_base_centers2d = batch_base_centers2d.view(-1, 2) * width_ratio

        dimensions_target = gt_bboxes_3d.tensor[:, 3:6]
        labels_3d = torch.cat(gt_labels_3d_list)
        keypoints2d_target = torch.cat(keypoints2d_list)
        keypoints_mask = torch.cat(keypoints_mask_list)
        keypoints_depth_mask = torch.cat(keypoints_depth_mask_list)
        offsets2d_target = torch.cat(offsets2d_list)
        bboxes2d = torch.cat(gt_bboxes_list)

        # transform FCOS style bbox into [x1, y1, x2, y2] format.
        bboxes2d_target = torch.cat([bboxes2d[:, 0:2] * -1, bboxes2d[:, 2:]],
                                    dim=-1)
        depths = torch.cat(depths_list)

        target_labels = dict(
            base_centers2d_target=batch_base_centers2d.int(),
            labels3d=labels_3d,
            reg_mask=flatten_reg_mask,
            batch_indices=batch_indices,
            bboxes2d_target=bboxes2d_target,
            depth_target=depths,
            keypoints2d_target=keypoints2d_target,
            keypoints_mask=keypoints_mask,
            keypoints_depth_mask=keypoints_depth_mask,
            orienations_target=orienations_target,
            offsets2d_target=offsets2d_target,
            dimensions_target=dimensions_target,
            downsample_ratio=1 / width_ratio)

        return center_heatmap_target, avg_factor, target_labels

    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             gt_bboxes_3d,
             gt_labels_3d,
             centers2d,
             depths,
             attr_labels,
             input_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level.
                shape (num_gt, 4).
            bbox_preds (list[Tensor]): Box dims is a 4D-tensor, the channel
                number is bbox_code_size.
                shape (B, 7, H, W).
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image.
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): Class indices corresponding to each box.
                shape (num_gts, ).
            gt_bboxes_3d (list[:obj:`CameraInstance3DBoxes`]): 3D boxes ground
                truth. it is the flipped gt_bboxes
            gt_labels_3d (list[Tensor]): Same as gt_labels.
            centers2d (list[Tensor]): 2D centers on the image.
                shape (num_gts, 2).
            depths (list[Tensor]): Depth ground truth.
                shape (num_gts, ).
            attr_labels (list[Tensor]): Attributes indices of each box.
                In kitti it's None.
            input_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
                boxes can be ignored when computing the loss.
                Default: None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == 1
        assert attr_labels is None
        assert gt_bboxes_ignore is None
        center2d_heatmap = cls_scores[0]
        pred_reg = bbox_preds[0]

        center2d_heatmap_target, avg_factor, target_labels = \
            self.get_targets(gt_bboxes, gt_labels, gt_bboxes_3d,
                             gt_labels_3d, centers2d, depths,
                             center2d_heatmap.shape,
                             input_metas[0]['pad_shape'],
                             input_metas)

        preds = self.get_predictions(
            pred_reg=pred_reg,
            labels3d=target_labels['labels3d'],
            centers2d=target_labels['base_centers2d_target'],
            reg_mask=target_labels['reg_mask'],
            batch_indices=target_labels['batch_indices'],
            input_metas=input_metas,
            downsample_ratio=target_labels['downsample_ratio'])

        # heatmap loss
        loss_cls = self.loss_cls(
            center2d_heatmap, center2d_heatmap_target, avg_factor=avg_factor)

        # bbox2d regression loss
        loss_bbox = self.loss_bbox(preds['bboxes2d'],
                                   target_labels['bboxes2d_target'])

        # keypoints loss, the keypoints in predictions and target are all
        # local coordinates. Check the mask dtype should be bool, not int
        # or float to ensure the indexing is bool index
        keypoints2d_mask = target_labels['keypoints2d_mask']
        loss_keypoints = self.loss_keypoints(
            preds['keypoints2d'][keypoints2d_mask],
            target_labels['keypoints2d_target'][keypoints2d_mask])

        # orientations loss
        loss_dir = self.loss_dir(preds['orientations'],
                                 target_labels['orientations_target'])

        # dimensions loss
        loss_dims = self.loss_dims(preds['dimensions'],
                                   target_labels['dimensions_target'])

        # offsets for center heatmap
        loss_offsets2d = self.loss_offsets2d(preds['offsets2d'],
                                             target_labels['offsets2d_target'])

        # directly regressed depth loss with direct depth uncertainty loss
        direct_depth_weights = torch.exp(-preds['direct_depth_uncertainty'])
        loss_weight_1 = self.loss_direct_depth.loss_weight
        loss_direct_depth = self.loss_direct_depth(
            preds['direct_depth'], target_labels['depth_target'],
            direct_depth_weights)
        loss_uncertainty_1 =\
            preds['direct_depth_uncertainty'] * loss_weight_1
        loss_direct_depth = loss_direct_depth + loss_uncertainty_1.mean()

        # keypoints decoded depth loss with keypoints depth uncertainty loss
        depth_mask = target_labels['keypoints_depth_mask']
        depth_target = target_labels['depth_target'].unsqueeze(-1).repeat(1, 3)
        valid_keypoints_depth_uncertainty = preds[
            'keypoints_depth_uncertainty'][depth_mask]
        valid_keypoints_depth_weights = torch.exp(
            -valid_keypoints_depth_uncertainty)
        loss_keypoints_depth = self.loss_keypoint_depth(
            preds['keypoints_depth'][depth_mask], depth_target[depth_mask],
            valid_keypoints_depth_weights)
        loss_weight_2 = self.loss_keypoints_depth.loss_weight
        loss_uncertainty_2 =\
            valid_keypoints_depth_uncertainty * loss_weight_2
        loss_keypoints_depth = loss_keypoints_depth + loss_uncertainty_2.mean()

        # combined depth loss for optimiaze the uncertainty
        loss_combined_depth = self.loss_combined_depth(
            preds['combined_depth'], target_labels['depth_target'])

        loss_dict = dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_keypoints=loss_keypoints,
            loss_dir=loss_dir,
            loss_dims=loss_dims,
            loss_offsets2d=loss_offsets2d,
            loss_direct_depth=loss_direct_depth,
            loss_keypoints_depth=loss_keypoints_depth,
            loss_combined_depth=loss_combined_depth)

        return loss_dict