test_indoor_pipeline.py 6.09 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os.path as osp

import mmcv
import numpy as np

from mmdet3d.datasets.pipelines import Compose


def test_scannet_pipeline():
    np.random.seed(0)
    pipelines = [
        dict(
            type='IndoorLoadPointsFromFile',
            use_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='IndoorLoadAnnotations3D'),
        dict(type='IndoorPointSample', num_points=5),
        dict(type='IndoorFlipData', flip_ratio_yz=1.0, flip_ratio_xz=1.0),
        dict(
            type='IndoorGlobalRotScale',
            use_height=True,
            rot_range=[-np.pi * 1 / 36, np.pi * 1 / 36],
yinchimaoliang's avatar
yinchimaoliang committed
24
            scale_range=None)
liyinhao's avatar
liyinhao committed
25
26
    ]
    pipeline = Compose(pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
27
    info = mmcv.load('./tests/data/scannet/scannet_infos.pkl')[0]
liyinhao's avatar
liyinhao committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    results = dict()
    data_path = './tests/data/scannet/scannet_train_instance_data'
    results['data_path'] = data_path
    scan_name = info['point_cloud']['lidar_idx']
    results['pts_filename'] = osp.join(data_path, f'{scan_name}_vert.npy')
    if info['annos']['gt_num'] != 0:
        scannet_gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']
        scannet_gt_labels = info['annos']['class'].reshape(-1, 1)
        scannet_gt_bboxes_3d_mask = np.ones_like(scannet_gt_labels)
    else:
        scannet_gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
        scannet_gt_labels = np.zeros((1, 1))
        scannet_gt_bboxes_3d_mask = np.zeros((1, 1))
    scan_name = info['point_cloud']['lidar_idx']
    results['pts_instance_mask_path'] = osp.join(data_path,
                                                 f'{scan_name}_ins_label.npy')
    results['pts_semantic_mask_path'] = osp.join(data_path,
                                                 f'{scan_name}_sem_label.npy')
    results['gt_bboxes_3d'] = scannet_gt_bboxes_3d
    results['gt_labels'] = scannet_gt_labels
    results['gt_bboxes_3d_mask'] = scannet_gt_bboxes_3d_mask
    results = pipeline(results)
    points = results['points']
    gt_bboxes_3d = results['gt_bboxes_3d']
    gt_labels = results['gt_labels']
    pts_semantic_mask = results['pts_semantic_mask']
    pts_instance_mask = results['pts_instance_mask']
    expected_points = np.array(
        [[-2.9078157, -1.9569951, 2.3543026, 2.389488],
         [-0.71360034, -3.4359822, 2.1330001, 2.1681855],
         [-1.332374, 1.474838, -0.04405887, -0.00887359],
         [2.1336637, -1.3265059, -0.02880373, 0.00638155],
         [0.43895668, -3.0259454, 1.5560012, 1.5911865]])
    expected_gt_bboxes_3d = np.array([
        [-1.5005362, -3.512584, 1.8565295, 1.7457027, 0.24149807, 0.57235193],
        [-2.8848705, 3.4961755, 1.5268247, 0.66170084, 0.17433672, 0.67153597],
        [-1.1585636, -2.192365, 0.61649567, 0.5557011, 2.5375574, 1.2144762],
        [-2.930457, -2.4856408, 0.9722377, 0.6270478, 1.8461524, 0.28697443],
        [3.3114715, -0.00476722, 1.0712197, 0.46191898, 3.8605113, 2.1603441]
    ])
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
    expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15])
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
    assert np.allclose(points, expected_points)
    assert np.allclose(gt_bboxes_3d[:5, :], expected_gt_bboxes_3d)
    assert np.all(gt_labels.flatten() == expected_gt_labels)
    assert np.all(pts_semantic_mask == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask == expected_pts_instance_mask)
yinchimaoliang's avatar
yinchimaoliang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143


def test_sunrgbd_pipeline():
    np.random.seed(0)
    pipelines = [
        dict(
            type='IndoorLoadPointsFromFile',
            use_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='IndoorFlipData', flip_ratio_yz=1.0),
        dict(
            type='IndoorGlobalRotScale',
            use_height=True,
            rot_range=[-np.pi / 6, np.pi / 6],
            scale_range=[0.85, 1.15]),
        dict(type='IndoorPointSample', num_points=5),
    ]
    pipeline = Compose(pipelines)
    results = dict()
    info = mmcv.load('./tests/data/sunrgbd/sunrgbd_infos.pkl')[0]
    data_path = './tests/data/sunrgbd/sunrgbd_trainval'
    scan_name = info['point_cloud']['lidar_idx']
    results['pts_filename'] = osp.join(data_path, 'lidar',
                                       f'{scan_name:06d}.npy')

    if info['annos']['gt_num'] != 0:
        gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']
        gt_labels = info['annos']['class'].reshape(-1, 1)
        gt_bboxes_3d_mask = np.ones_like(gt_labels)
    else:
        gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
        gt_labels = np.zeros((1, 1))
        gt_bboxes_3d_mask = np.zeros((1, 1))
    results['gt_bboxes_3d'] = gt_bboxes_3d
    results['gt_labels'] = gt_labels
    results['gt_bboxes_3d_mask'] = gt_bboxes_3d_mask
    results = pipeline(results)
    points = results['points']
    gt_bboxes_3d = results['gt_bboxes_3d']
    gt_labels = results['gt_labels']
    expected_points = np.array(
        [[0.6570105, 1.5538014, 0.24514851, 1.0165423],
         [0.656101, 1.558591, 0.21755838, 0.98895216],
         [0.6293659, 1.5679953, -0.10004003, 0.67135376],
         [0.6068739, 1.5974995, -0.41063973, 0.36075398],
         [0.6464709, 1.5573514, 0.15114647, 0.9225402]])
    expected_gt_bboxes_3d = np.array([[
        -2.012483, 3.9473376, -0.25446942, 2.3730404, 1.9457763, 2.0303352,
        1.2205974
    ],
                                      [
                                          -3.7036808, 4.2396426, -0.81091917,
                                          0.6032123, 0.91040343, 1.003341,
                                          1.2662518
                                      ],
                                      [
                                          0.6528646, 2.1638472, -0.15228128,
                                          0.7347852, 1.6113238, 2.1694272,
                                          2.81404
                                      ]])
    expected_gt_labels = np.array([0, 7, 6])
    assert np.allclose(gt_bboxes_3d, expected_gt_bboxes_3d)
    assert np.allclose(gt_labels.flatten(), expected_gt_labels)
    assert np.allclose(points, expected_points)