benchmarks.md 14.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4

# Benchmarks

Here we benchmark the training and testing speed of models in MMDetection3D,
zhangwenwei's avatar
zhangwenwei committed
5
with some other open source 3D detection codebases.
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10

## Settings

* Hardwares: 8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
* Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0.
zhangwenwei's avatar
zhangwenwei committed
11
* Model: Since all the other codebases implements different models, we compare the corresponding models including SECOND, PointPillars, Part-A2, and VoteNet with them separately.
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
* Metrics: We use the average throughput in iterations of the entire training run and skip the first 50 iterations of each epoch to skip GPU warmup time.
  Note that the throughput of a detector typically changes during training, because it depends on the predictions of the model.

## Main Results

### VoteNet

zhangwenwei's avatar
zhangwenwei committed
19
We compare our implementation of VoteNet with [votenet](https://github.com/facebookresearch/votenet/) and report the performance on SUNRGB-D v2 dataset under the AP@0.5 metric. We find that our implementation achieves higher accuracy, so we also report the AP here.
zhangwenwei's avatar
zhangwenwei committed
20
21

```eval_rst
ZwwWayne's avatar
ZwwWayne committed
22
23
24
25
26
+----------------+---------------------+--------------------+--------+
| Implementation | Training (sample/s) | Testing (sample/s) | AP@0.5 |
+================+=====================+====================+========+
| MMDetection3D  |        358          |         17         |  35.8  |
+----------------+---------------------+--------------------+--------+
zhangwenwei's avatar
zhangwenwei committed
27
| votenet        |        77           |         3          |  31.5  |
ZwwWayne's avatar
ZwwWayne committed
28
29
+----------------+---------------------+--------------------+--------+

zhangwenwei's avatar
zhangwenwei committed
30
31
```

zhangwenwei's avatar
zhangwenwei committed
32
### Single-Class PointPillars
zhangwenwei's avatar
zhangwenwei committed
33

zhangwenwei's avatar
zhangwenwei committed
34
Since [Det3D](https://github.com/poodarchu/Det3D/) only provides PointPillars on car class, we compare the training speed of single-class PointPillars here.
zhangwenwei's avatar
zhangwenwei committed
35
36

```eval_rst
ZwwWayne's avatar
ZwwWayne committed
37
38
39
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
zhangwenwei's avatar
zhangwenwei committed
40
| MMDetection3D  |         141         |                    |
ZwwWayne's avatar
ZwwWayne committed
41
42
43
+----------------+---------------------+--------------------+
| Det3D          |         140         |        20          |
+----------------+---------------------+--------------------+
zhangwenwei's avatar
zhangwenwei committed
44
45
```

zhangwenwei's avatar
zhangwenwei committed
46
47
48
49
50
### Multi-Class PointPillars

[OpenPCDet](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2) only provides PointPillars
on 3 classes, we compare the training speed of multi-class PointPillars here.

zhangwenwei's avatar
zhangwenwei committed
51
```eval_rst
zhangwenwei's avatar
zhangwenwei committed
52
53
54
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
zhangwenwei's avatar
zhangwenwei committed
55
| MMDetection3D  |         107         |                    |
zhangwenwei's avatar
zhangwenwei committed
56
+----------------+---------------------+--------------------+
zhangwenwei's avatar
zhangwenwei committed
57
| OpenPCDet      |         44          |        67          |
zhangwenwei's avatar
zhangwenwei committed
58
+----------------+---------------------+--------------------+
zhangwenwei's avatar
zhangwenwei committed
59
60
61
62
```

### SECOND

63
[Det3D](https://github.com/poodarchu/Det3D/) provides a different SECOND on car class and we cannot train the original SECOND by modifying the config.
zhangwenwei's avatar
zhangwenwei committed
64
So we only compare SECOND with [OpenPCDet](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), which is a SECOND model on 3 classes, we report the AP on moderate
zhangwenwei's avatar
zhangwenwei committed
65
66
67
condition following the KITTI benchmark and compare average AP over all classes on moderate condition for
performance on 3 classes.

zhangwenwei's avatar
zhangwenwei committed
68
69
70
71
```eval_rst
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
zhangwenwei's avatar
zhangwenwei committed
72
| MMDetection3D  |         40          |                    |
zhangwenwei's avatar
zhangwenwei committed
73
74
75
76
+----------------+---------------------+--------------------+
| OpenPCDet      |         30          |         32         |
+----------------+---------------------+--------------------+
```
zhangwenwei's avatar
zhangwenwei committed
77
78
79

### Part-A2

liyinhao's avatar
liyinhao committed
80
We benchmark Part-A2 with that in [OpenPCDet](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2). We report the AP on moderate condition following the KITTI benchmark
zhangwenwei's avatar
zhangwenwei committed
81
82
and compare average AP over all classes on moderate condition for performance on 3 classes.

zhangwenwei's avatar
zhangwenwei committed
83
84
85
86
```eval_rst
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
zhangwenwei's avatar
zhangwenwei committed
87
| MMDetection3D  |         17          |                    |
zhangwenwei's avatar
zhangwenwei committed
88
89
90
91
+----------------+---------------------+--------------------+
| OpenPCDet      |         14          |         13         |
+----------------+---------------------+--------------------+
```
zhangwenwei's avatar
zhangwenwei committed
92
93
94

## Details of Comparison

95
96
### Modification for Calculating Speed

zhangwenwei's avatar
zhangwenwei committed
97
* __MMDetection3D__: We try to use as similar settings as those of other codebases as possible using [benchmark configs](https://github.com/open-mmlab/MMDetection3D/blob/master/configs/benchmark).
98

zhangwenwei's avatar
zhangwenwei committed
99
100
101
* __Det3D__: For comparison with Det3D, we use the commit [255c593]().

* __OpenPCDet__: For comparison with OpenPCDet, we use the commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2).
liyinhao's avatar
liyinhao committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    For training speed, we add code to record the running time in the file `./tools/train_utils/train_utils.py`. We calculate the speed of each epoch, and report the average speed of all the epochs.
    <details>
    <summary>
    (diff to make it use the same method for benchmarking speed - click to expand)
    </summary>

    ```diff
    diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py
    index 91f21dd..021359d 100644
    --- a/tools/train_utils/train_utils.py
    +++ b/tools/train_utils/train_utils.py
    @@ -2,6 +2,7 @@ import torch
     import os
     import glob
     import tqdm
    +import datetime
     from torch.nn.utils import clip_grad_norm_


    @@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
         if rank == 0:
             pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True)

    +    start_time = None
         for cur_it in range(total_it_each_epoch):
    +        if cur_it > 49 and start_time is None:
    +            start_time = datetime.datetime.now()
             try:
                 batch = next(dataloader_iter)
             except StopIteration:
    @@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
                     tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter)
                     for key, val in tb_dict.items():
                         tb_log.add_scalar('train_' + key, val, accumulated_iter)
    +    endtime = datetime.datetime.now()
    +    speed = (endtime - start_time).seconds / (total_it_each_epoch - 50)
         if rank == 0:
             pbar.close()
    -    return accumulated_iter
    +    return accumulated_iter, speed


     def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg,
    @@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50,
                     merge_all_iters_to_one_epoch=False):
         accumulated_iter = start_iter
    +    speeds = []
         with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
             total_it_each_epoch = len(train_loader)
             if merge_all_iters_to_one_epoch:
    @@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     cur_scheduler = lr_warmup_scheduler
                 else:
                     cur_scheduler = lr_scheduler
    -            accumulated_iter = train_one_epoch(
    +            accumulated_iter, speed = train_one_epoch(
                     model, optimizer, train_loader, model_func,
                     lr_scheduler=cur_scheduler,
                     accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,
    @@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     total_it_each_epoch=total_it_each_epoch,
                     dataloader_iter=dataloader_iter
                 )
    -
    +            speeds.append(speed)
                 # save trained model
                 trained_epoch = cur_epoch + 1
                 if trained_epoch % ckpt_save_interval == 0 and rank == 0:
    @@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     save_checkpoint(
                         checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name,
                     )
    +            print(speed)
    +    print(f'*******{sum(speeds) / len(speeds)}******')


     def model_state_to_cpu(model_state):
    ```

    </details>

    For testing speed, we add code to record the running time in the file `./tools/eval_utils/eval_utils.py`.
    <details>
    <summary>
    (diff to make it use the same method for benchmarking speed - click to expand)
    </summary>

    ```diff
    diff --git a/tools/eval_utils/eval_utils.py b/tools/eval_utils/eval_utils.py
    index 0cbf17b..f51e687 100644
    --- a/tools/eval_utils/eval_utils.py
    +++ b/tools/eval_utils/eval_utils.py
    @@ -49,8 +49,11 @@ def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, dist_test=False, sa

         if cfg.LOCAL_RANK == 0:
             progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval', dynamic_ncols=True)
    -    start_time = time.time()
    +    num_warmup = 5
    +    pure_inf_time = 0
         for i, batch_dict in enumerate(dataloader):
    +        torch.cuda.synchronize()
    +        start_time = time.perf_counter()
             for key, val in batch_dict.items():
                 if not isinstance(val, np.ndarray):
                     continue
    @@ -61,7 +64,14 @@ def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, dist_test=False, sa
             with torch.no_grad():
                 pred_dicts, ret_dict = model(batch_dict)
             disp_dict = {}
    -
    +        torch.cuda.synchronize()
    +        elapsed = time.perf_counter() - start_time
    +        if i >= num_warmup:
    +            pure_inf_time += elapsed
    +        if (i + 1) == 2000:
    +            pure_inf_time += elapsed
    +            fps = (i + 1 - num_warmup) / pure_inf_time
    +            out_str = f'Overall fps: {fps:.1f} img / s'
             statistics_info(cfg, ret_dict, metric, disp_dict)
             annos = dataset.generate_prediction_dicts(
                 batch_dict, pred_dicts, class_names,
    @@ -71,7 +81,7 @@ def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, dist_test=False, sa
             if cfg.LOCAL_RANK == 0:
                 progress_bar.set_postfix(disp_dict)
                 progress_bar.update()
    -
    +    print(out_str)
         if cfg.LOCAL_RANK == 0:
             progress_bar.close()
    ```

    </details>
236

zhangwenwei's avatar
zhangwenwei committed
237
238
239
### VoteNet

* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
240
241
242
243
244

  ```bash
  ./tools/dist_train.sh configs/votenet/votenet_16x8_sunrgbd-3d-10class.py 8 --no-validate
  ```

zhangwenwei's avatar
zhangwenwei committed
245
  Then benchmark the test speed by running
liyinhao's avatar
liyinhao committed
246
  ```bash
zhangwenwei's avatar
zhangwenwei committed
247

zhangwenwei's avatar
zhangwenwei committed
248
  ```
zhangwenwei's avatar
zhangwenwei committed
249

zhangwenwei's avatar
zhangwenwei committed
250
* __votenet__: At commit 2f6d6d3, run
liyinhao's avatar
liyinhao committed
251
252

  ```bash
zhangwenwei's avatar
zhangwenwei committed
253
  python train.py --dataset sunrgbd --batch_size 16
liyinhao's avatar
liyinhao committed
254
255
  ```

zhangwenwei's avatar
zhangwenwei committed
256
  Then benchmark the test speed by running
liyinhao's avatar
liyinhao committed
257
  ```bash
zhangwenwei's avatar
zhangwenwei committed
258

liyinhao's avatar
liyinhao committed
259
  ```
260

zhangwenwei's avatar
zhangwenwei committed
261
262
### Single-class PointPillars

263
* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
264
265
266

  ```bash
  /tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py 8 --no-validate
ZwwWayne's avatar
ZwwWayne committed
267
  ```
liyinhao's avatar
liyinhao committed
268

zhangwenwei's avatar
zhangwenwei committed
269
270
271
272
273
  Then benchmark the test speed by running
  ```bash

  ```

liyinhao's avatar
liyinhao committed
274
275
276
* __Det3D__: At commit 255c593, use kitti_point_pillars_mghead_syncbn.py and run

  ```bash
ZwwWayne's avatar
ZwwWayne committed
277
278
  ./tools/scripts/train.sh --launcher=slurm --gpus=8
  ```
liyinhao's avatar
liyinhao committed
279

ZwwWayne's avatar
ZwwWayne committed
280
281
282
283
  Note that the config in train.sh is modified to train point pillars.

  <details>
  <summary>
liyinhao's avatar
liyinhao committed
284
  (diff to benchmark the similar models - click to expand)
ZwwWayne's avatar
ZwwWayne committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  </summary>

  ```diff
  diff --git a/tools/scripts/train.sh b/tools/scripts/train.sh
  index 3a93f95..461e0ea 100755
  --- a/tools/scripts/train.sh
  +++ b/tools/scripts/train.sh
  @@ -16,9 +16,9 @@ then
   fi

   # Voxelnet
  -python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
  +# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
   # python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/cbgs/configs/  nusc_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$NUSC_CBGS_WORK_DIR
   # python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  lyft_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$LYFT_CBGS_WORK_DIR

   # PointPillars
  -# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/  original_pp_mghead_syncbn_kitti.py --work_dir=$PP_WORK_DIR
  +python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/  kitti_point_pillars_mghead_syncbn.py
  ```
wuyuefeng's avatar
wuyuefeng committed
305

ZwwWayne's avatar
ZwwWayne committed
306
  </details>
zhangwenwei's avatar
zhangwenwei committed
307

zhangwenwei's avatar
zhangwenwei committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  Then benchmark the test speed by running
  ```bash

  ```

### Multi-class PointPillars

* __MMDetection3D__: With release v0.1.0, run

  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```

  Then benchmark the test speed by running
  ```bash

  ```

* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), run

  ```bash
  cd tools
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/pointpillar.yaml --batch_size 32  --workers 32
  ```

  Then benchmark the test speed by running
  ```bash

  ```

zhangwenwei's avatar
zhangwenwei committed
338
339
340
341
### SECOND

* __MMDetection3D__: With release v0.1.0, run

liyinhao's avatar
liyinhao committed
342
343
344
  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```
zhangwenwei's avatar
zhangwenwei committed
345

zhangwenwei's avatar
zhangwenwei committed
346
347
348
349
350
351
  Then benchmark the test speed by running
  ```bash

  ```

* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), run
liyinhao's avatar
liyinhao committed
352
353
354
355
356

  ```bash
  cd tools
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/second.yaml --batch_size 32  --workers 32
  ```
zhangwenwei's avatar
zhangwenwei committed
357

zhangwenwei's avatar
zhangwenwei committed
358
359
360
361
362
  Then benchmark the test speed by running
  ```bash

  ```

zhangwenwei's avatar
zhangwenwei committed
363
364
365
366
### Part-A2

* __MMDetection3D__: With release v0.1.0, run

liyinhao's avatar
liyinhao committed
367
368
369
370
  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```

zhangwenwei's avatar
zhangwenwei committed
371
372
373
374
375
376
  Then benchmark the test speed by running
  ```bash

  ```

* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), train the model by running
liyinhao's avatar
liyinhao committed
377
378
379
380
381

  ```bash
  cd tools
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/PartA2.yaml --batch_size 32 --workers 32
  ```
zhangwenwei's avatar
zhangwenwei committed
382
383
384
385
386

  Then benchmark the test speed by running
  ```bash

  ```