test_lyft_dataset.py 2.38 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv.transforms.base import BaseTransform
from mmengine.registry import TRANSFORMS
5
from mmengine.structures import InstanceData
VVsssssk's avatar
VVsssssk committed
6
7

from mmdet3d.datasets import LyftDataset
zhangshilong's avatar
zhangshilong committed
8
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes
VVsssssk's avatar
VVsssssk committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


def _generate_nus_dataset_config():
    data_root = 'tests/data/lyft'
    ann_file = 'lyft_infos.pkl'
    classes = [
        'car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
        'motorcycle', 'bicycle', 'pedestrian', 'animal'
    ]
    if 'Identity' not in TRANSFORMS:

        @TRANSFORMS.register_module()
        class Identity(BaseTransform):

            def transform(self, info):
                packed_input = dict(data_sample=Det3DDataSample())
                if 'ann_info' in info:
                    packed_input['data_sample'].gt_instances_3d = InstanceData(
                    )
                    packed_input[
                        'data_sample'].gt_instances_3d.labels_3d = info[
                            'ann_info']['gt_labels_3d']
                return packed_input

    pipeline = [
        dict(type='Identity'),
    ]
    modality = dict(use_lidar=True, use_camera=False)
37
    data_prefix = dict(pts='lidar', img='', sweeps='sweeps/LIDAR_TOP')
VVsssssk's avatar
VVsssssk committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    return data_root, ann_file, classes, data_prefix, pipeline, modality


def test_getitem():
    np.random.seed(0)
    data_root, ann_file, classes, data_prefix, pipeline, modality = \
        _generate_nus_dataset_config()

    lyft_dataset = LyftDataset(
        data_root,
        ann_file,
        data_prefix=data_prefix,
        pipeline=pipeline,
        metainfo=dict(CLASSES=classes),
        modality=modality)

    lyft_dataset.prepare_data(0)
    input_dict = lyft_dataset.get_data_info(0)
    # assert the the path should contains data_prefix and data_root
    assert input_dict['lidar_points'][
        'lidar_path'] == 'tests/data/lyft/lidar/host-a017_lidar1_' \
                         '1236118886901125926.bin'

    ann_info = lyft_dataset.parse_ann_info(input_dict)

    # assert the keys in ann_info and the type
    assert 'gt_labels_3d' in ann_info
    assert ann_info['gt_labels_3d'].dtype == np.int64
    assert len(ann_info['gt_labels_3d']) == 3

    assert 'gt_bboxes_3d' in ann_info
    assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes)

    assert len(lyft_dataset.metainfo['CLASSES']) == 9