roiaware_pool3d.cpp 4.88 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
//Modified from
//https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu
//RoI-aware point cloud feature pooling
//Written by Shaoshuai Shi
//All Rights Reserved 2019.


#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include <assert.h>


#define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
#define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x, " must be contiguous ")
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)


void roiaware_pool3d_launcher(int boxes_num, int pts_num, int channels, int max_pts_each_voxel,
    int out_x, int out_y, int out_z, const float *rois, const float *pts, const float *pts_feature,
    int *argmax, int *pts_idx_of_voxels, float *pooled_features, int pool_method);

void roiaware_pool3d_backward_launcher(int boxes_num, int out_x, int out_y, int out_z, int channels, int max_pts_each_voxel,
    const int *pts_idx_of_voxels, const int *argmax, const float *grad_out, float *grad_in, int pool_method);

int roiaware_pool3d_gpu(at::Tensor rois, at::Tensor pts, at::Tensor pts_feature, at::Tensor argmax,
    at::Tensor pts_idx_of_voxels, at::Tensor pooled_features, int pool_method);

int roiaware_pool3d_gpu_backward(at::Tensor pts_idx_of_voxels, at::Tensor argmax, at::Tensor grad_out,
    at::Tensor grad_in, int pool_method);

int points_in_boxes_cpu(at::Tensor boxes_tensor, at::Tensor pts_tensor, at::Tensor pts_indices_tensor);

int points_in_boxes_gpu(at::Tensor boxes_tensor, at::Tensor pts_tensor, at::Tensor box_idx_of_points_tensor);


int roiaware_pool3d_gpu(at::Tensor rois, at::Tensor pts, at::Tensor pts_feature, at::Tensor argmax, at::Tensor pts_idx_of_voxels, at::Tensor pooled_features, int pool_method){
    // params rois: (N, 7) [x, y, z, w, l, h, ry] in LiDAR coordinate
    // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate
    // params pts_feature: (npoints, C)
    // params argmax: (N, out_x, out_y, out_z, C)
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    // params pooled_features: (N, out_x, out_y, out_z, C)
    // params pool_method: 0: max_pool 1: avg_pool

    CHECK_INPUT(rois);
    CHECK_INPUT(pts);
    CHECK_INPUT(pts_feature);
    CHECK_INPUT(argmax);
    CHECK_INPUT(pts_idx_of_voxels);
    CHECK_INPUT(pooled_features);

    int boxes_num = rois.size(0);
    int pts_num = pts.size(0);
    int channels = pts_feature.size(1);
    int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
    int out_x = pts_idx_of_voxels.size(1);
    int out_y = pts_idx_of_voxels.size(2);
    int out_z = pts_idx_of_voxels.size(3);
    assert ((out_x < 256) && (out_y < 256) && (out_z < 256));  // we encode index with 8bit

    const float *rois_data = rois.data<float>();
    const float *pts_data = pts.data<float>();
    const float *pts_feature_data = pts_feature.data<float>();
    int *argmax_data = argmax.data<int>();
    int *pts_idx_of_voxels_data = pts_idx_of_voxels.data<int>();
    float *pooled_features_data = pooled_features.data<float>();

    roiaware_pool3d_launcher(boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z,
        rois_data, pts_data, pts_feature_data, argmax_data, pts_idx_of_voxels_data, pooled_features_data, pool_method);

    return 1;
}

int roiaware_pool3d_gpu_backward(at::Tensor pts_idx_of_voxels, at::Tensor argmax, at::Tensor grad_out, at::Tensor grad_in, int pool_method){
    // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
    // params argmax: (N, out_x, out_y, out_z, C)
    // params grad_out: (N, out_x, out_y, out_z, C)
    // params grad_in: (npoints, C), return value
    // params pool_method: 0: max_pool 1: avg_pool

    CHECK_INPUT(pts_idx_of_voxels);
    CHECK_INPUT(argmax);
    CHECK_INPUT(grad_out);
    CHECK_INPUT(grad_in);

    int boxes_num = pts_idx_of_voxels.size(0);
    int out_x = pts_idx_of_voxels.size(1);
    int out_y = pts_idx_of_voxels.size(2);
    int out_z = pts_idx_of_voxels.size(3);
    int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
    int channels = grad_out.size(4);

    const int *pts_idx_of_voxels_data = pts_idx_of_voxels.data<int>();
    const int *argmax_data = argmax.data<int>();
    const float *grad_out_data = grad_out.data<float>();
    float *grad_in_data = grad_in.data<float>();

    roiaware_pool3d_backward_launcher(boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel,
        pts_idx_of_voxels_data, argmax_data, grad_out_data, grad_in_data, pool_method);

    return 1;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &roiaware_pool3d_gpu, "roiaware pool3d forward (CUDA)");
    m.def("backward", &roiaware_pool3d_gpu_backward, "roiaware pool3d backward (CUDA)");
    m.def("points_in_boxes_gpu", &points_in_boxes_gpu, "points_in_boxes_gpu forward (CUDA)");
    m.def("points_in_boxes_cpu", &points_in_boxes_cpu, "points_in_boxes_cpu forward (CPU)");
}