train_aug.py 12.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
import numpy as np

from mmdet3d.core.bbox import box_np_ops
from mmdet3d.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
5
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from mmdet.datasets.registry import PIPELINES
from ..registry import OBJECTSAMPLERS
from .data_augment_utils import noise_per_object_v3_


@PIPELINES.register_module
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
        flip_ratio (float, optional): The flipping probability.
    """

    def __init__(self, sync_2d=True, **kwargs):
        super(RandomFlip3D, self).__init__(**kwargs)
        self.sync_2d = sync_2d

    def random_flip_points(self, gt_bboxes_3d, points):
        gt_bboxes_3d[:, 1] = -gt_bboxes_3d[:, 1]
        gt_bboxes_3d[:, 6] = -gt_bboxes_3d[:, 6] + np.pi
        points[:, 1] = -points[:, 1]
        if gt_bboxes_3d.shape[1] == 9:
            # flip velocitys at the same time
            gt_bboxes_3d[:, 8] = -gt_bboxes_3d[:, 8]
        return gt_bboxes_3d, points

    def __call__(self, input_dict):
        super(RandomFlip3D, self).__call__(input_dict)
        if self.sync_2d:
            input_dict['pcd_flip'] = input_dict['flip']
        else:
            flip = True if np.random.rand() < self.flip_ratio else False
            input_dict['pcd_flip'] = flip
        if input_dict['pcd_flip']:
            # flip image
            gt_bboxes_3d = input_dict['gt_bboxes_3d']
            points = input_dict['points']
            gt_bboxes_3d, points = self.random_flip_points(
                gt_bboxes_3d, points)
            input_dict['gt_bboxes_3d'] = gt_bboxes_3d
            input_dict['points'] = points
        return input_dict


@PIPELINES.register_module
class ObjectSample(object):

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
        masks = box_np_ops.points_in_rbbox(points, boxes)
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        gt_names_3d = input_dict['gt_names_3d']
        gt_bboxes_3d_mask = input_dict['gt_bboxes_3d_mask']
        # change to float for blending operation
        points = input_dict['points']
        #         rect = input_dict['rect']
        #         Trv2c = input_dict['Trv2c']
        #         P2 = input_dict['P2']
        if self.sample_2d:
            img = input_dict['img']  # .astype(np.float32)
            gt_bboxes_2d = input_dict['gt_bboxes']
            gt_bboxes_mask = input_dict['gt_bboxes_mask']
            gt_names = input_dict['gt_names']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
                gt_bboxes_3d, gt_names_3d, gt_bboxes_2d=gt_bboxes_2d, img=img)
        else:
            sampled_dict = self.db_sampler.sample_all(
                gt_bboxes_3d, gt_names_3d, img=None)

        if sampled_dict is not None:
            sampled_gt_names = sampled_dict['gt_names']
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
            sampled_gt_masks = sampled_dict['gt_masks']

            gt_names_3d = np.concatenate([gt_names_3d, sampled_gt_names],
                                         axis=0)
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, sampled_gt_bboxes_3d
                                           ]).astype(np.float32)
            gt_bboxes_3d_mask = np.concatenate(
                [gt_bboxes_3d_mask, sampled_gt_masks], axis=0)
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
            dim_inds = points.shape[-1]
            points = np.concatenate([sampled_points[:, :dim_inds], points],
                                    axis=0)

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
                gt_bboxes_mask = np.concatenate(
                    [gt_bboxes_mask, sampled_gt_masks], axis=0)
                gt_names = np.concatenate([gt_names, sampled_gt_names], axis=0)
                input_dict['gt_names'] = gt_names
                input_dict['gt_bboxes'] = gt_bboxes_2d
                input_dict['gt_bboxes_mask'] = gt_bboxes_mask
                input_dict['img'] = sampled_dict['img']  # .astype(np.uint8)

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
        input_dict['gt_names_3d'] = gt_names_3d
        input_dict['points'] = points
        input_dict['gt_bboxes_3d_mask'] = gt_bboxes_3d_mask
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


@PIPELINES.register_module
class ObjectNoise(object):

    def __init__(self,
                 loc_noise_std=[0.25, 0.25, 0.25],
                 global_rot_range=[0.0, 0.0],
                 rot_uniform_noise=[-0.15707963267, 0.15707963267],
                 num_try=100):
        self.loc_noise_std = loc_noise_std
        self.global_rot_range = global_rot_range
        self.rot_uniform_noise = rot_uniform_noise
        self.num_try = num_try

    def __call__(self, input_dict):
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
        gt_bboxes_3d_mask = input_dict['gt_bboxes_3d_mask']
        # TODO: check this inplace function
        noise_per_object_v3_(
            gt_bboxes_3d,
            points,
            gt_bboxes_3d_mask,
            rotation_perturb=self.rot_uniform_noise,
            center_noise_std=self.loc_noise_std,
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.astype('float32')
        input_dict['points'] = points
        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(num_try={},'.format(self.num_try)
        repr_str += ' loc_noise_std={},'.format(self.loc_noise_std)
        repr_str += ' global_rot_range={},'.format(self.global_rot_range)
        repr_str += ' rot_uniform_noise={})'.format(self.rot_uniform_noise)
        return repr_str


@PIPELINES.register_module
class GlobalRotScale(object):

    def __init__(self,
                 rot_uniform_noise=[-0.78539816, 0.78539816],
                 scaling_uniform_noise=[0.95, 1.05],
                 trans_normal_noise=[0, 0, 0]):
        self.rot_uniform_noise = rot_uniform_noise
        self.scaling_uniform_noise = scaling_uniform_noise
        self.trans_normal_noise = trans_normal_noise

    def _trans_bbox_points(self, gt_boxes, points):
        noise_trans = np.random.normal(0, self.trans_normal_noise[0], 3).T
        points[:, :3] += noise_trans
        gt_boxes[:, :3] += noise_trans
        return gt_boxes, points, noise_trans

    def _rot_bbox_points(self, gt_boxes, points, rotation=np.pi / 4):
        if not isinstance(rotation, list):
            rotation = [-rotation, rotation]
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
        points[:, :3], rot_mat_T = box_np_ops.rotation_points_single_angle(
            points[:, :3], noise_rotation, axis=2)
        gt_boxes[:, :3], _ = box_np_ops.rotation_points_single_angle(
            gt_boxes[:, :3], noise_rotation, axis=2)
        gt_boxes[:, 6] += noise_rotation
        if gt_boxes.shape[1] == 9:
            # rotate velo vector
            rot_cos = np.cos(noise_rotation)
            rot_sin = np.sin(noise_rotation)
            rot_mat_T_bev = np.array([[rot_cos, -rot_sin], [rot_sin, rot_cos]],
                                     dtype=points.dtype)
            gt_boxes[:, 7:9] = gt_boxes[:, 7:9] @ rot_mat_T_bev
        return gt_boxes, points, rot_mat_T

    def _scale_bbox_points(self,
                           gt_boxes,
                           points,
                           min_scale=0.95,
                           max_scale=1.05):
        noise_scale = np.random.uniform(min_scale, max_scale)
        points[:, :3] *= noise_scale
        gt_boxes[:, :6] *= noise_scale
        if gt_boxes.shape[1] == 9:
            gt_boxes[:, 7:] *= noise_scale
        return gt_boxes, points, noise_scale

    def __call__(self, input_dict):
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']

        gt_bboxes_3d, points, rotation_factor = self._rot_bbox_points(
            gt_bboxes_3d, points, rotation=self.rot_uniform_noise)
        gt_bboxes_3d, points, scale_factor = self._scale_bbox_points(
            gt_bboxes_3d, points, *self.scaling_uniform_noise)
        gt_bboxes_3d, points, trans_factor = self._trans_bbox_points(
            gt_bboxes_3d, points)

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.astype('float32')
        input_dict['points'] = points
        input_dict['pcd_scale_factor'] = scale_factor
        input_dict['pcd_rotation'] = rotation_factor
        input_dict['pcd_trans'] = trans_factor
        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(rot_uniform_noise={},'.format(self.rot_uniform_noise)
        repr_str += ' scaling_uniform_noise={},'.format(
            self.scaling_uniform_noise)
        repr_str += ' trans_normal_noise={})'.format(self.trans_normal_noise)
        return repr_str


@PIPELINES.register_module
class PointShuffle(object):

    def __call__(self, input_dict):
        np.random.shuffle(input_dict['points'])
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


@PIPELINES.register_module
class ObjectRangeFilter(object):

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    @staticmethod
    def limit_period(val, offset=0.5, period=np.pi):
        return val - np.floor(val / period + offset) * period

    @staticmethod
    def filter_gt_box_outside_range(gt_bboxes_3d, limit_range):
        """remove gtbox outside training range.
        this function should be applied after other prep functions
        Args:
            gt_bboxes_3d ([type]): [description]
            limit_range ([type]): [description]
        """
        gt_bboxes_3d_bv = box_np_ops.center_to_corner_box2d(
            gt_bboxes_3d[:, [0, 1]], gt_bboxes_3d[:, [3, 3 + 1]],
            gt_bboxes_3d[:, 6])
        bounding_box = box_np_ops.minmax_to_corner_2d(
            np.asarray(limit_range)[np.newaxis, ...])
        ret = box_np_ops.points_in_convex_polygon_jit(
            gt_bboxes_3d_bv.reshape(-1, 2), bounding_box)
        return np.any(ret.reshape(-1, 4), axis=1)

    def __call__(self, input_dict):
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        gt_names_3d = input_dict['gt_names_3d']
        gt_bboxes_3d_mask = input_dict['gt_bboxes_3d_mask']
        mask = self.filter_gt_box_outside_range(gt_bboxes_3d, self.bev_range)
        gt_bboxes_3d = gt_bboxes_3d[mask]
        gt_names_3d = gt_names_3d[mask]
        # the mask should also be updated
        gt_bboxes_3d_mask = gt_bboxes_3d_mask[mask]

        # limit rad to [-pi, pi]
        gt_bboxes_3d[:, 6] = self.limit_period(
            gt_bboxes_3d[:, 6], offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.astype('float32')
        input_dict['gt_names_3d'] = gt_names_3d
        input_dict['gt_bboxes_3d_mask'] = gt_bboxes_3d_mask
        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str


@PIPELINES.register_module
class PointsRangeFilter(object):

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(
            point_cloud_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        points = input_dict['points']
        points_mask = ((points[:, :3] >= self.pcd_range[:, :3])
                       & (points[:, :3] < self.pcd_range[:, 3:]))
        points_mask = points_mask[:, 0] & points_mask[:, 1] & points_mask[:, 2]
        clean_points = points[points_mask, :]
        input_dict['points'] = clean_points
        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str