test_voxelnet.py 2.95 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangshilong's avatar
zhangshilong committed
2
3
import unittest

4
import torch
zhangshilong's avatar
zhangshilong committed
5
from mmengine import DefaultScope
6
7

from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
8
9
from tests.utils.model_utils import (_create_detector_inputs,
                                     _get_detector_cfg, _setup_seed)
jshilong's avatar
jshilong committed
10

jshilong's avatar
jshilong committed
11

zhangshilong's avatar
zhangshilong committed
12
class TestVoxelNet(unittest.TestCase):
jshilong's avatar
jshilong committed
13

zhangshilong's avatar
zhangshilong committed
14
15
    def test_voxelnet(self):
        import mmdet3d.models
jshilong's avatar
jshilong committed
16

zhangshilong's avatar
zhangshilong committed
17
18
19
20
        assert hasattr(mmdet3d.models, 'VoxelNet')
        DefaultScope.get_instance('test_voxelnet', scope_name='mmdet3d')
        _setup_seed(0)
        pointpillars_cfg = _get_detector_cfg(
21
            'pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py')
zhangshilong's avatar
zhangshilong committed
22
23
        model = MODELS.build(pointpillars_cfg)
        num_gt_instance = 2
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        packed_inputs = _create_detector_inputs(
            num_gt_instance=num_gt_instance)

        # TODO: Support aug_test
        # aug_data = [
        #     _create_detector_inputs(num_gt_instance=num_gt_instance),
        #     _create_detector_inputs(num_gt_instance=num_gt_instance + 1)
        # ]
        # # test_aug_test
        # metainfo = {
        #     'pcd_scale_factor': 1,
        #     'pcd_horizontal_flip': 1,
        #     'pcd_vertical_flip': 1,
        #     'box_type_3d': LiDARInstance3DBoxes
        # }
        # for item in aug_data:
        #     item['data_sample'].set_metainfo(metainfo)

zhangshilong's avatar
zhangshilong committed
42
43
44
45
        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
46
                data = model.data_preprocessor(packed_inputs, True)
zhangshilong's avatar
zhangshilong committed
47
                torch.cuda.empty_cache()
48
49
                results = model.forward(**data, mode='predict')
            self.assertEqual(len(results), 1)
zhangshilong's avatar
zhangshilong committed
50
51
52
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)
53
54
55
56
57
58
59
60
61
62
63
64
65
66

            # TODO: Support aug_test
            # batch_inputs, data_samples = model.data_preprocessor(
            #     aug_data, True)
            # aug_results = model.forward(
            #     batch_inputs, data_samples, mode='predict')
            # self.assertEqual(len(results), len(data))
            # self.assertIn('bboxes_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('scores_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('labels_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('bboxes_3d', aug_results[1].pred_instances_3d)
            # self.assertIn('scores_3d', aug_results[1].pred_instances_3d)
            # self.assertIn('labels_3d', aug_results[1].pred_instances_3d)

zhangshilong's avatar
zhangshilong committed
67
            # save the memory
jshilong's avatar
jshilong committed
68

zhangshilong's avatar
zhangshilong committed
69
            with torch.no_grad():
70
                losses = model.forward(**data, mode='loss')
zhangshilong's avatar
zhangshilong committed
71
                torch.cuda.empty_cache()
72
73
74
            self.assertGreaterEqual(losses['loss_dir'][0], 0)
            self.assertGreaterEqual(losses['loss_bbox'][0], 0)
            self.assertGreaterEqual(losses['loss_cls'][0], 0)