anchor3d_head.py 19 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
import torch
import torch.nn as nn
4
from mmcv.cnn import bias_init_with_prob, normal_init
zhangwenwei's avatar
zhangwenwei committed
5

zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core import (PseudoSampler, box3d_multiclass_nms, box_torch_ops,
zhangwenwei's avatar
zhangwenwei committed
7
                          boxes3d_to_bev_torch_lidar, build_anchor_generator,
zhangwenwei's avatar
zhangwenwei committed
8
9
                          build_assigner, build_bbox_coder, build_sampler)
from mmdet.core import multi_apply
zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
from ..builder import build_loss
from .train_mixins import AnchorTrainMixin


15
@HEADS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
17
class Anchor3DHead(nn.Module, AnchorTrainMixin):
    """Anchor head for SECOND/PointPillars/MVXNet/PartA2.
18

zhangwenwei's avatar
zhangwenwei committed
19
    Args:
zhangwenwei's avatar
zhangwenwei committed
20
        num_classes (int): Number of classes.
zhangwenwei's avatar
zhangwenwei committed
21
        in_channels (int): Number of channels in the input feature map.
wuyuefeng's avatar
wuyuefeng committed
22
23
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
zhangwenwei's avatar
zhangwenwei committed
24
        feat_channels (int): Number of channels of the feature map.
25
26
27
28
29
30
31
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
wuyuefeng's avatar
wuyuefeng committed
32
        dir_offset (float | int): The offset of BEV rotation angles.
33
            (TODO: may be moved into box coder)
wuyuefeng's avatar
wuyuefeng committed
34
35
36
        dir_limit_offset (float | int): The limited range of BEV
            rotation angles. (TODO: may be moved into box coder)
        bbox_coder (dict): Config dict of box coders.
zhangwenwei's avatar
zhangwenwei committed
37
38
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
39
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
40
    """
zhangwenwei's avatar
zhangwenwei committed
41
42

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
43
                 num_classes,
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
49
50
51
52
53
54
55
56
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
61
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
62
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
63
64
65
66
67
68
69
70
71
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
        super().__init__()
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
72
        self.num_classes = num_classes
zhangwenwei's avatar
zhangwenwei committed
73
74
75
76
77
78
79
80
81
82
83
        self.feat_channels = feat_channels
        self.diff_rad_by_sin = diff_rad_by_sin
        self.use_direction_classifier = use_direction_classifier
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.assigner_per_size = assigner_per_size
        self.assign_per_class = assign_per_class
        self.dir_offset = dir_offset
        self.dir_limit_offset = dir_limit_offset

        # build anchor generator
84
        self.anchor_generator = build_anchor_generator(anchor_generator)
zhangwenwei's avatar
zhangwenwei committed
85
        # In 3D detection, the anchor stride is connected with anchor size
86
        self.num_anchors = self.anchor_generator.num_base_anchors
zhangwenwei's avatar
zhangwenwei committed
87
88
89
        # build box coder
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.box_code_size = self.bbox_coder.code_size
zhangwenwei's avatar
zhangwenwei committed
90

zhangwenwei's avatar
zhangwenwei committed
91
        # build loss function
zhangwenwei's avatar
zhangwenwei committed
92
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
zhangwenwei's avatar
zhangwenwei committed
93
        self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC']
zhangwenwei's avatar
zhangwenwei committed
94
95
96
97
98
99
100
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_dir = build_loss(loss_dir)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self._init_layers()
        self._init_assigner_sampler()

    def _init_assigner_sampler(self):
        if self.train_cfg is None:
            return

        if self.sampling:
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)
        else:
            self.bbox_sampler = PseudoSampler()
        if isinstance(self.train_cfg.assigner, dict):
            self.bbox_assigner = build_assigner(self.train_cfg.assigner)
        elif isinstance(self.train_cfg.assigner, list):
            self.bbox_assigner = [
                build_assigner(res) for res in self.train_cfg.assigner
            ]

zhangwenwei's avatar
zhangwenwei committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    def _init_layers(self):
        self.cls_out_channels = self.num_anchors * self.num_classes
        self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.feat_channels,
                                  self.num_anchors * self.box_code_size, 1)
        if self.use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(self.feat_channels,
                                          self.num_anchors * 2, 1)

    def init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)

    def forward_single(self, x):
wuyuefeng's avatar
wuyuefeng committed
134
135
136
137
138
139
140
141
142
        """Forward function on a single-scale feature map.

        Args:
            x (Tensor): Input features.

        Returns:
            tuple[Tensor]: Contain score of each class, bbox predictions
                and class predictions of direction.
        """
zhangwenwei's avatar
zhangwenwei committed
143
144
145
146
147
148
149
150
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
        return cls_score, bbox_pred, dir_cls_preds

    def forward(self, feats):
wuyuefeng's avatar
wuyuefeng committed
151
152
153
154
155
156
157
158
159
160
        """Forward pass.

        Args:
            feats (list[Tensor]): Multi-level features, e.g.,
                features produced by FPN.

        Returns:
            tuple[list[Tensor]]: Multi-level class score, bbox
                and direction predictions.
        """
zhangwenwei's avatar
zhangwenwei committed
161
162
        return multi_apply(self.forward_single, feats)

163
    def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
zhangwenwei's avatar
zhangwenwei committed
164
        """Get anchors according to feature map sizes.
zhangwenwei's avatar
zhangwenwei committed
165

zhangwenwei's avatar
zhangwenwei committed
166
167
168
        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            input_metas (list[dict]): contain pcd and img's meta info.
zhangwenwei's avatar
zhangwenwei committed
169
170
            device (str): device of current module

zhangwenwei's avatar
zhangwenwei committed
171
172
173
174
175
176
        Returns:
            tuple: anchors of each image, valid flags of each image
        """
        num_imgs = len(input_metas)
        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
177
178
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
179
180
181
182
183
184
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]
        return anchor_list

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
wuyuefeng's avatar
wuyuefeng committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        """Calculate loss of Single-level results.

        Args:
            cls_score (Tensor): Class score in single-level.
            bbox_pred (Tensor): Bbox prediction in single-level.
            dir_cls_preds (Tensor): Predictions of direction class
                in single-level.
            labels (Tensor): Labels of class.
            label_weights (Tensor): Weights of class loss.
            bbox_targets (Tensor): Targets of bbox predictions.
            bbox_weights (Tensor): Weights of bbox loss.
            dir_targets (Tensor): Targets of direction predictions.
            dir_weights (Tensor): Weights of direction loss.
            num_total_samples (int): The number of valid samples.

        Returns:
            tuple[Tensor]: losses of class, bbox and direction, respectively.
        """
zhangwenwei's avatar
zhangwenwei committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)
        code_weight = self.train_cfg.get('code_weight', None)

        if code_weight:
            bbox_weights = bbox_weights * bbox_weights.new_tensor(code_weight)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, self.box_code_size)
        if self.diff_rad_by_sin:
            bbox_pred, bbox_targets = self.add_sin_difference(
                bbox_pred, bbox_targets)
        loss_bbox = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)

        # direction classification loss
        loss_dir = None
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
            loss_dir = self.loss_dir(
                dir_cls_preds,
                dir_targets,
                dir_weights,
                avg_factor=num_total_samples)

        return loss_cls, loss_bbox, loss_dir

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
zhangwenwei's avatar
zhangwenwei committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        """Convert the rotation difference to difference in sine function

        Args:
            boxes1 (Tensor): shape (NxC), where C>=7 and the 7th dimension is
                rotation dimension
            boxes2 (Tensor): shape (NxC), where C>=7 and the 7th dimension is
                rotation dimension

        Returns:
            tuple: (boxes1, boxes2) whose 7th dimensions are changed
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
zhangwenwei's avatar
zhangwenwei committed
265
266
267
268
269
270
271
272
273
274
        return boxes1, boxes2

    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
wuyuefeng's avatar
wuyuefeng committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        """Calculate losses.

        Args:
            cls_scores (list[Tensor]): Multi-level class scores.
            bbox_preds (list[Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[Tensor]): Multi-level direction
                class predictions.
            gt_bboxes (list[:obj:BaseInstance3DBoxes]): Gt bboxes
                of each sample.
            gt_labels (list[Tensor]): Gt labels of each sample.
            input_metas (list[dict]): Contain pcd and img's meta info.
            gt_bboxes_ignore (None | list[Tensor]): Specify which bounding.

        Returns:
            dict: Contain class, bbox and direction losses of each level.
        """
zhangwenwei's avatar
zhangwenwei committed
291
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
292
293
294
295
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            featmap_sizes, input_metas, device=device)
zhangwenwei's avatar
zhangwenwei committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            label_channels=label_channels,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
zhangwenwei's avatar
zhangwenwei committed
329
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir)
zhangwenwei's avatar
zhangwenwei committed
330
331
332
333
334
335

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
zhangwenwei's avatar
zhangwenwei committed
336
                   cfg=None,
zhangwenwei's avatar
zhangwenwei committed
337
                   rescale=False):
wuyuefeng's avatar
wuyuefeng committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        """Get bboxes of anchor head.

        Args:
            cls_scores (list[Tensor]): Multi-level class scores.
            bbox_preds (list[Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[Tensor]): Multi-level direction
                class predictions.
            input_metas (list[dict]): Contain pcd and img's meta info.
            cfg (None | ConfigDict): Training or testing config.
            rescale (list[Tensor]): whether th rescale bbox.

        Returns:
            list[tuple]: prediction resultes of batches.
        """
zhangwenwei's avatar
zhangwenwei committed
352
353
354
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
355
356
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        device = cls_scores[0].device
357
        mlvl_anchors = self.anchor_generator.grid_anchors(
358
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
359
        mlvl_anchors = [
360
            anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
zhangwenwei's avatar
zhangwenwei committed
361
        ]
362

zhangwenwei's avatar
zhangwenwei committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
zhangwenwei's avatar
zhangwenwei committed
378
                                               input_meta, cfg, rescale)
zhangwenwei's avatar
zhangwenwei committed
379
380
381
382
383
384
385
386
387
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
zhangwenwei's avatar
zhangwenwei committed
388
                          cfg=None,
zhangwenwei's avatar
zhangwenwei committed
389
                          rescale=False):
wuyuefeng's avatar
wuyuefeng committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        """Get bboxes of single branch.

        Args:
            cls_scores (Tensor): Class score in single batch.
            bbox_preds (Tensor): Bbox prediction in single batch.
            dir_cls_preds (Tensor): Predictions of direction class
                in single batch.
            mlvl_anchors (List[Tensor]): Multi-level anchors in single batch.
            input_meta (list[dict]): Contain pcd and img's meta info.
            cfg (None | ConfigDict): Training or testing config.
            rescale (list[Tensor]): whether th rescale bbox.

        Returns:
            tuple: Contain predictions of single batch.
                - bboxes (:obj:BaseInstance3DBoxes): Predicted 3d bboxes.
                - scores (Tensor): Class score of each bbox.
                - labels (Tensor): Label of each bbox.
        """
zhangwenwei's avatar
zhangwenwei committed
408
        cfg = self.test_cfg if cfg is None else cfg
zhangwenwei's avatar
zhangwenwei committed
409
410
411
412
413
414
415
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
zhangwenwei's avatar
zhangwenwei committed
416
417
418
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
zhangwenwei's avatar
zhangwenwei committed
419
420
421
422
423
424
425
426
427
428

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

zhangwenwei's avatar
zhangwenwei committed
429
430
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
zhangwenwei's avatar
zhangwenwei committed
431
432
433
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
zhangwenwei's avatar
zhangwenwei committed
434
435
436
437
438
439
440
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

441
            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
zhangwenwei's avatar
zhangwenwei committed
442
443
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
zhangwenwei's avatar
zhangwenwei committed
444
            mlvl_dir_scores.append(dir_cls_score)
zhangwenwei's avatar
zhangwenwei committed
445
446

        mlvl_bboxes = torch.cat(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
447
        mlvl_bboxes_for_nms = boxes3d_to_bev_torch_lidar(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
448
449
450
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

zhangwenwei's avatar
zhangwenwei committed
451
452
453
454
455
456
457
458
459
460
461
        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
zhangwenwei's avatar
zhangwenwei committed
462
            dir_rot = box_torch_ops.limit_period(
zhangwenwei's avatar
zhangwenwei committed
463
464
                bboxes[..., 6] - self.dir_offset, self.dir_limit_offset, np.pi)
            bboxes[..., 6] = (
zhangwenwei's avatar
zhangwenwei committed
465
                dir_rot + self.dir_offset +
zhangwenwei's avatar
zhangwenwei committed
466
                np.pi * dir_scores.to(bboxes.dtype))
467
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
468
        return bboxes, scores, labels