voxel_encoder.py 26.7 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from typing import Optional, Sequence, Tuple

zhangwenwei's avatar
zhangwenwei committed
4
import torch
5
from mmcv.cnn import build_norm_layer
6
from mmcv.ops import DynamicScatter
jshilong's avatar
jshilong committed
7
from torch import Tensor, nn
zhangwenwei's avatar
zhangwenwei committed
8

9
from mmdet3d.registry import MODELS
zhangwenwei's avatar
zhangwenwei committed
10
from .utils import VFELayer, get_paddings_indicator
zhangwenwei's avatar
zhangwenwei committed
11
12


13
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
class HardSimpleVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
15
    """Simple voxel feature encoder used in SECOND.
zhangwenwei's avatar
zhangwenwei committed
16

zhangwenwei's avatar
zhangwenwei committed
17
    It simply averages the values of points in a voxel.
18
19

    Args:
20
        num_features (int, optional): Number of features to use. Default: 4.
zhangwenwei's avatar
zhangwenwei committed
21
    """
zhangwenwei's avatar
zhangwenwei committed
22

jshilong's avatar
jshilong committed
23
    def __init__(self, num_features: int = 4) -> None:
zhangwenwei's avatar
zhangwenwei committed
24
        super(HardSimpleVFE, self).__init__()
25
        self.num_features = num_features
zhangwenwei's avatar
zhangwenwei committed
26

jshilong's avatar
jshilong committed
27
28
    def forward(self, features: Tensor, num_points: Tensor, coors: Tensor,
                *args, **kwargs) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
29
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
30
31

        Args:
wangtai's avatar
wangtai committed
32
            features (torch.Tensor): Point features in shape
zhangwenwei's avatar
zhangwenwei committed
33
34
35
36
37
38
39
40
41
                (N, M, 3(4)). N is the number of voxels and M is the maximum
                number of points inside a single voxel.
            num_points (torch.Tensor): Number of points in each voxel,
                 shape (N, ).
            coors (torch.Tensor): Coordinates of voxels.

        Returns:
            torch.Tensor: Mean of points inside each voxel in shape (N, 3(4))
        """
42
        points_mean = features[:, :, :self.num_features].sum(
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
            dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1)
        return points_mean.contiguous()


47
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
48
class DynamicSimpleVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
49
    """Simple dynamic voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
57

    It simply averages the values of points in a voxel.
    But the number of points in a voxel is dynamic and varies.

    Args:
        voxel_size (tupe[float]): Size of a single voxel
        point_cloud_range (tuple[float]): Range of the point cloud and voxels
    """
zhangwenwei's avatar
zhangwenwei committed
58
59
60
61

    def __init__(self,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1)):
zhangwenwei's avatar
zhangwenwei committed
62
        super(DynamicSimpleVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
63
64
65
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

    @torch.no_grad()
jshilong's avatar
jshilong committed
66
    def forward(self, features, coors, *args, **kwargs):
zhangwenwei's avatar
zhangwenwei committed
67
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
68
69

        Args:
wangtai's avatar
wangtai committed
70
            features (torch.Tensor): Point features in shape
zhangwenwei's avatar
zhangwenwei committed
71
72
73
74
75
76
77
                (N, 3(4)). N is the number of points.
            coors (torch.Tensor): Coordinates of voxels.

        Returns:
            torch.Tensor: Mean of points inside each voxel in shape (M, 3(4)).
                M is the number of voxels.
        """
zhangwenwei's avatar
zhangwenwei committed
78
79
80
81
82
83
        # This function is used from the start of the voxelnet
        # num_points: [concated_num_points]
        features, features_coors = self.scatter(features, coors)
        return features, features_coors


84
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
85
class DynamicVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
86
    """Dynamic Voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
87
88
89
90
91
92

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.
    The number of points inside the voxel varies.

    Args:
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        in_channels (int, optional): Input channels of VFE. Defaults to 4.
        feat_channels (list(int), optional): Channels of features in VFE.
        with_distance (bool, optional): Whether to use the L2 distance of
            points to the origin point. Defaults to False.
        with_cluster_center (bool, optional): Whether to use the distance
            to cluster center of points inside a voxel. Defaults to False.
        with_voxel_center (bool, optional): Whether to use the distance
            to center of voxel for each points inside a voxel.
            Defaults to False.
        voxel_size (tuple[float], optional): Size of a single voxel.
            Defaults to (0.2, 0.2, 4).
        point_cloud_range (tuple[float], optional): The range of points
            or voxels. Defaults to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict, optional): Config dict of normalization layers.
        mode (str, optional): The mode when pooling features of points
            inside a voxel. Available options include 'max' and 'avg'.
            Defaults to 'max'.
        fusion_layer (dict, optional): The config dict of fusion
            layer used in multi-modal detectors. Defaults to None.
        return_point_feats (bool, optional): Whether to return the features
            of each points. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
114
    """
zhangwenwei's avatar
zhangwenwei committed
115
116

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
117
118
                 in_channels=4,
                 feat_channels=[],
zhangwenwei's avatar
zhangwenwei committed
119
120
121
122
123
124
125
126
127
128
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False):
        super(DynamicVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
129
130
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
131
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
132
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
133
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
134
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
135
        if with_distance:
136
            in_channels += 1
zhangwenwei's avatar
zhangwenwei committed
137
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range

zhangwenwei's avatar
zhangwenwei committed
152
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
153
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
154
155
156
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
157
158
159
160
161
162
163
            if i > 0:
                in_filters *= 2
            norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
            vfe_layers.append(
                nn.Sequential(
                    nn.Linear(in_filters, out_filters, bias=False), norm_layer,
                    nn.ReLU(inplace=True)))
164
        self.vfe_layers = nn.ModuleList(vfe_layers)
zhangwenwei's avatar
zhangwenwei committed
165
166
167
168
169
170
171
        self.num_vfe = len(vfe_layers)
        self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range,
                                          (mode != 'max'))
        self.cluster_scatter = DynamicScatter(
            voxel_size, point_cloud_range, average_points=True)
        self.fusion_layer = None
        if fusion_layer is not None:
172
            self.fusion_layer = MODELS.build(fusion_layer)
zhangwenwei's avatar
zhangwenwei committed
173
174

    def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors):
zhangwenwei's avatar
zhangwenwei committed
175
176
177
178
179
180
181
182
183
184
        """Map voxel features to its corresponding points.

        Args:
            pts_coors (torch.Tensor): Voxel coordinate of each point.
            voxel_mean (torch.Tensor): Voxel features to be mapped.
            voxel_coors (torch.Tensor): Coordinates of valid voxels

        Returns:
            torch.Tensor: Features or centers of each point.
        """
zhangwenwei's avatar
zhangwenwei committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        # Step 1: scatter voxel into canvas
        # Calculate necessary things for canvas creation
        canvas_z = int(
            (self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz)
        canvas_y = int(
            (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy)
        canvas_x = int(
            (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx)
        # canvas_channel = voxel_mean.size(1)
        batch_size = pts_coors[-1, 0] + 1
        canvas_len = canvas_z * canvas_y * canvas_x * batch_size
        # Create the canvas for this sample
        canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long)
        # Only include non-empty pillars
        indices = (
            voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            voxel_coors[:, 1] * canvas_y * canvas_x +
            voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3])
        # Scatter the blob back to the canvas
        canvas[indices.long()] = torch.arange(
            start=0, end=voxel_mean.size(0), device=voxel_mean.device)

        # Step 2: get voxel mean for each point
        voxel_index = (
            pts_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            pts_coors[:, 1] * canvas_y * canvas_x +
            pts_coors[:, 2] * canvas_x + pts_coors[:, 3])
        voxel_inds = canvas[voxel_index.long()]
        center_per_point = voxel_mean[voxel_inds, ...]
        return center_per_point

    def forward(self,
                features,
                coors,
                points=None,
                img_feats=None,
jshilong's avatar
jshilong committed
221
222
223
                img_metas=None,
                *args,
                **kwargs):
zhangwenwei's avatar
zhangwenwei committed
224
        """Forward functions.
zhangwenwei's avatar
zhangwenwei committed
225
226
227
228
229
230

        Args:
            features (torch.Tensor): Features of voxels, shape is NxC.
            coors (torch.Tensor): Coordinates of voxels, shape is  Nx(1+NDim).
            points (list[torch.Tensor], optional): Raw points used to guide the
                multi-modality fusion. Defaults to None.
231
            img_feats (list[torch.Tensor], optional): Image features used for
zhangwenwei's avatar
zhangwenwei committed
232
                multi-modality fusion. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
233
            img_metas (dict, optional): [description]. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
234
235
236
237
238

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            voxel_mean, mean_coors = self.cluster_scatter(features, coors)
            points_mean = self.map_voxel_center_to_point(
                coors, voxel_mean, mean_coors)
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :3] - points_mean[:, :3]
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 3))
            f_center[:, 0] = features[:, 0] - (
                coors[:, 3].type_as(features) * self.vx + self.x_offset)
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            f_center[:, 2] = features[:, 2] - (
                coors[:, 1].type_as(features) * self.vz + self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)
        for i, vfe in enumerate(self.vfe_layers):
            point_feats = vfe(features)
            if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None
                    and img_feats is not None):
                point_feats = self.fusion_layer(img_feats, points, point_feats,
zhangwenwei's avatar
zhangwenwei committed
272
                                                img_metas)
zhangwenwei's avatar
zhangwenwei committed
273
274
275
276
277
278
279
280
281
282
283
284
            voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors)
            if i != len(self.vfe_layers) - 1:
                # need to concat voxel feats if it is not the last vfe
                feat_per_point = self.map_voxel_center_to_point(
                    coors, voxel_feats, voxel_coors)
                features = torch.cat([point_feats, feat_per_point], dim=1)

        if self.return_point_feats:
            return point_feats
        return voxel_feats, voxel_coors


285
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
286
class HardVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
287
    """Voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
288
289
290
291
292

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.

    Args:
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        in_channels (int, optional): Input channels of VFE. Defaults to 4.
        feat_channels (list(int), optional): Channels of features in VFE.
        with_distance (bool, optional): Whether to use the L2 distance
            of points to the origin point. Defaults to False.
        with_cluster_center (bool, optional): Whether to use the distance
            to cluster center of points inside a voxel. Defaults to False.
        with_voxel_center (bool, optional): Whether to use the distance to
            center of voxel for each points inside a voxel. Defaults to False.
        voxel_size (tuple[float], optional): Size of a single voxel.
            Defaults to (0.2, 0.2, 4).
        point_cloud_range (tuple[float], optional): The range of points
            or voxels. Defaults to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict, optional): Config dict of normalization layers.
        mode (str, optional): The mode when pooling features of points inside a
            voxel. Available options include 'max' and 'avg'.
            Defaults to 'max'.
        fusion_layer (dict, optional): The config dict of fusion layer
            used in multi-modal detectors. Defaults to None.
        return_point_feats (bool, optional): Whether to return the
            features of each points. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
313
    """
zhangwenwei's avatar
zhangwenwei committed
314
315

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
316
317
                 in_channels=4,
                 feat_channels=[],
zhangwenwei's avatar
zhangwenwei committed
318
319
320
321
322
323
324
325
326
327
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False):
        super(HardVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
328
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
329
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
330
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
331
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
332
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
333
        if with_distance:
334
            in_channels += 1
zhangwenwei's avatar
zhangwenwei committed
335
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset to calculate pillar offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range

zhangwenwei's avatar
zhangwenwei committed
350
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
351
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
352
353
354
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
355
356
357
358
            if i > 0:
                in_filters *= 2
            # TODO: pass norm_cfg to VFE
            # norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
zhangwenwei's avatar
zhangwenwei committed
359
            if i == (len(feat_channels) - 2):
zhangwenwei's avatar
zhangwenwei committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
                cat_max = False
                max_out = True
                if fusion_layer:
                    max_out = False
            else:
                max_out = True
                cat_max = True
            vfe_layers.append(
                VFELayer(
                    in_filters,
                    out_filters,
                    norm_cfg=norm_cfg,
                    max_out=max_out,
                    cat_max=cat_max))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        self.num_vfe = len(vfe_layers)

        self.fusion_layer = None
        if fusion_layer is not None:
379
            self.fusion_layer = MODELS.build(fusion_layer)
zhangwenwei's avatar
zhangwenwei committed
380
381
382
383
384
385

    def forward(self,
                features,
                num_points,
                coors,
                img_feats=None,
jshilong's avatar
jshilong committed
386
387
388
                img_metas=None,
                *args,
                **kwargs):
zhangwenwei's avatar
zhangwenwei committed
389
        """Forward functions.
zhangwenwei's avatar
zhangwenwei committed
390
391
392
393
394

        Args:
            features (torch.Tensor): Features of voxels, shape is MxNxC.
            num_points (torch.Tensor): Number of points in each voxel.
            coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim).
395
            img_feats (list[torch.Tensor], optional): Image features used for
zhangwenwei's avatar
zhangwenwei committed
396
                multi-modality fusion. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
397
            img_metas (dict, optional): [description]. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
398
399
400
401
402

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            points_mean = (
                features[:, :, :3].sum(dim=1, keepdim=True) /
                num_points.type_as(features).view(-1, 1, 1))
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :, :3] - points_mean
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(
                size=(features.size(0), features.size(1), 3))
            f_center[:, :, 0] = features[:, :, 0] - (
                coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
                self.x_offset)
            f_center[:, :, 1] = features[:, :, 1] - (
                coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
                self.y_offset)
            f_center[:, :, 2] = features[:, :, 2] - (
                coors[:, 1].type_as(features).unsqueeze(1) * self.vz +
                self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        voxel_feats = torch.cat(features_ls, dim=-1)
        # The feature decorations were calculated without regard to whether
        # pillar was empty.
        # Need to ensure that empty voxels remain set to zeros.
        voxel_count = voxel_feats.shape[1]
        mask = get_paddings_indicator(num_points, voxel_count, axis=0)
        voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats)

        for i, vfe in enumerate(self.vfe_layers):
            voxel_feats = vfe(voxel_feats)
zhangwenwei's avatar
zhangwenwei committed
444

zhangwenwei's avatar
zhangwenwei committed
445
446
        if (self.fusion_layer is not None and img_feats is not None):
            voxel_feats = self.fusion_with_mask(features, mask, voxel_feats,
zhangwenwei's avatar
zhangwenwei committed
447
                                                coors, img_feats, img_metas)
zhangwenwei's avatar
zhangwenwei committed
448

zhangwenwei's avatar
zhangwenwei committed
449
450
451
        return voxel_feats

    def fusion_with_mask(self, features, mask, voxel_feats, coors, img_feats,
zhangwenwei's avatar
zhangwenwei committed
452
                         img_metas):
zhangwenwei's avatar
zhangwenwei committed
453
454
455
456
457
458
459
460
461
        """Fuse image and point features with mask.

        Args:
            features (torch.Tensor): Features of voxel, usually it is the
                values of points in voxels.
            mask (torch.Tensor): Mask indicates valid features in each voxel.
            voxel_feats (torch.Tensor): Features of voxels.
            coors (torch.Tensor): Coordinates of each single voxel.
            img_feats (list[torch.Tensor]): Multi-scale feature maps of image.
zhangwenwei's avatar
zhangwenwei committed
462
            img_metas (list(dict)): Meta information of image and points.
zhangwenwei's avatar
zhangwenwei committed
463
464
465
466

        Returns:
            torch.Tensor: Fused features of each voxel.
        """
zhangwenwei's avatar
zhangwenwei committed
467
468
469
470
471
472
473
474
475
        # the features is consist of a batch of points
        batch_size = coors[-1, 0] + 1
        points = []
        for i in range(batch_size):
            single_mask = (coors[:, 0] == i)
            points.append(features[single_mask][mask[single_mask]])

        point_feats = voxel_feats[mask]
        point_feats = self.fusion_layer(img_feats, points, point_feats,
zhangwenwei's avatar
zhangwenwei committed
476
                                        img_metas)
zhangwenwei's avatar
zhangwenwei committed
477

zhangwenwei's avatar
zhangwenwei committed
478
479
480
481
482
        voxel_canvas = voxel_feats.new_zeros(
            size=(voxel_feats.size(0), voxel_feats.size(1),
                  point_feats.size(-1)))
        voxel_canvas[mask] = point_feats
        out = torch.max(voxel_canvas, dim=1)[0]
zhangwenwei's avatar
zhangwenwei committed
483

zhangwenwei's avatar
zhangwenwei committed
484
        return out
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504


@MODELS.register_module()
class SegVFE(nn.Module):
    """Voxel feature encoder used in segmentation task.

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.
    The number of points inside the voxel varies.

    Args:
        in_channels (int): Input channels of VFE. Defaults to 6.
        feat_channels (list(int)): Channels of features in VFE.
        with_voxel_center (bool): Whether to use the distance
            to center of voxel for each points inside a voxel.
            Defaults to False.
        voxel_size (tuple[float]): Size of a single voxel (rho, phi, z).
            Defaults to None.
        grid_shape (tuple[float]): The grid shape of voxelization.
            Defaults to (480, 360, 32).
505
506
        point_cloud_range (tuple[float]): The range of points or voxels.
            Defaults to (0, -3.14159265359, -4, 50, 3.14159265359, 2).
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        norm_cfg (dict): Config dict of normalization layers.
        mode (str): The mode when pooling features of points
            inside a voxel. Available options include 'max' and 'avg'.
            Defaults to 'max'.
        with_pre_norm (bool): Whether to use the norm layer before
            input vfe layer.
        feat_compression (int, optional): The voxel feature compression
            channels, Defaults to None
        return_point_feats (bool): Whether to return the features
            of each points. Defaults to False.
    """

    def __init__(self,
                 in_channels: int = 6,
                 feat_channels: Sequence[int] = [],
                 with_voxel_center: bool = False,
                 voxel_size: Optional[Sequence[float]] = None,
                 grid_shape: Sequence[float] = (480, 360, 32),
525
526
                 point_cloud_range: Sequence[float] = (0, -3.14159265359, -4,
                                                       50, 3.14159265359, 2),
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
                 norm_cfg: dict = dict(type='BN1d', eps=1e-5, momentum=0.1),
                 mode: bool = 'max',
                 with_pre_norm: bool = True,
                 feat_compression: Optional[int] = None,
                 return_point_feats: bool = False) -> None:
        super(SegVFE, self).__init__()
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
        assert not (voxel_size and grid_shape), \
            'voxel_size and grid_shape cannot be setting at the same time'
        if with_voxel_center:
            in_channels += 3
        self.in_channels = in_channels
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        self.point_cloud_range = point_cloud_range
        point_cloud_range = torch.tensor(
            point_cloud_range, dtype=torch.float32)
        if voxel_size:
            self.voxel_size = voxel_size
            voxel_size = torch.tensor(voxel_size, dtype=torch.float32)
            grid_shape = (point_cloud_range[3:] -
                          point_cloud_range[:3]) / voxel_size
            grid_shape = torch.round(grid_shape).long().tolist()
            self.grid_shape = grid_shape
        elif grid_shape:
            grid_shape = torch.tensor(grid_shape, dtype=torch.float32)
            voxel_size = (point_cloud_range[3:] - point_cloud_range[:3]) / (
                grid_shape - 1)
            voxel_size = voxel_size.tolist()
            self.voxel_size = voxel_size
        else:
            raise ValueError('must assign a value to voxel_size or grid_shape')

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = self.voxel_size[0]
564
565
        self.vy = self.voxel_size[1]
        self.vz = self.voxel_size[2]
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]

        feat_channels = [self.in_channels] + list(feat_channels)
        if with_pre_norm:
            self.pre_norm = build_norm_layer(norm_cfg, self.in_channels)[1]
        vfe_layers = []
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
            norm_layer = build_norm_layer(norm_cfg, out_filters)[1]
            if i == len(feat_channels) - 2:
                vfe_layers.append(nn.Linear(in_filters, out_filters))
            else:
                vfe_layers.append(
                    nn.Sequential(
                        nn.Linear(in_filters, out_filters), norm_layer,
                        nn.ReLU(inplace=True)))
        self.vfe_layers = nn.ModuleList(vfe_layers)
        self.vfe_scatter = DynamicScatter(self.voxel_size,
                                          self.point_cloud_range,
                                          (mode != 'max'))
        self.compression_layers = None
        if feat_compression is not None:
591
592
            self.compression_layers = nn.Sequential(
                nn.Linear(feat_channels[-1], feat_compression), nn.ReLU())
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

    def forward(self, features: Tensor, coors: Tensor, *args,
                **kwargs) -> Tuple[Tensor]:
        """Forward functions.

        Args:
            features (Tensor): Features of voxels, shape is NxC.
            coors (Tensor): Coordinates of voxels, shape is  Nx(1+NDim).

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels additionally.
        """
        features_ls = [features]

        # Find distance of x, y, and z from voxel center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 3))
            f_center[:, 0] = features[:, 0] - (
613
                coors[:, 1].type_as(features) * self.vx + self.x_offset)
614
615
616
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            f_center[:, 2] = features[:, 2] - (
617
                coors[:, 3].type_as(features) * self.vz + self.z_offset)
618
619
620
621
622
623
624
625
            features_ls.append(f_center)

        # Combine together feature decorations
        features = torch.cat(features_ls[::-1], dim=-1)
        if self.pre_norm is not None:
            features = self.pre_norm(features)

        point_feats = []
626
        for vfe in self.vfe_layers:
627
628
            features = vfe(features)
            point_feats.append(features)
629
        voxel_feats, voxel_coors = self.vfe_scatter(features, coors)
630
631
632
633
634
635
636

        if self.compression_layers is not None:
            voxel_feats = self.compression_layers(voxel_feats)

        if self.return_point_feats:
            return voxel_feats, voxel_coors, point_feats
        return voxel_feats, voxel_coors