custom_3d_seg.py 16.7 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import tempfile
3
import warnings
4
from os import path as osp
5
6
7

import mmcv
import numpy as np
8
9
from torch.utils.data import Dataset

10
from mmdet3d.registry import DATASETS
11
from .pipelines import Compose
12
from .utils import extract_result_dict, get_loading_pipeline
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


@DATASETS.register_module()
class Custom3DSegDataset(Dataset):
    """Customized 3D dataset for semantic segmentation task.

    This is the base dataset of ScanNet and S3DIS dataset.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
34
        ignore_index (int, optional): The label index to be ignored, e.g.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
            unannotated points. If None is given, set to len(self.CLASSES) to
            be consistent with PointSegClassMapping function in pipeline.
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
    """
    # names of all classes data used for the task
    CLASSES = None

    # class_ids used for training
    VALID_CLASS_IDS = None

    # all possible class_ids in loaded segmentation mask
    ALL_CLASS_IDS = None

    # official color for visualization
    PALETTE = None

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
63
64
                 scene_idxs=None,
                 file_client_args=dict(backend='disk')):
65
66
67
68
69
        super().__init__()
        self.data_root = data_root
        self.ann_file = ann_file
        self.test_mode = test_mode
        self.modality = modality
70
71
72
73
74
75
76
77
78
79
80
81
82
        self.file_client = mmcv.FileClient(**file_client_args)

        # load annotations
        if hasattr(self.file_client, 'get_local_path'):
            with self.file_client.get_local_path(self.ann_file) as local_path:
                self.data_infos = self.load_annotations(open(local_path, 'rb'))
        else:
            warnings.warn(
                'The used MMCV version does not have get_local_path. '
                f'We treat the {self.ann_file} as local paths and it '
                'might cause errors if the path is not a local path. '
                'Please use MMCV>= 1.3.16 if you meet errors.')
            self.data_infos = self.load_annotations(self.ann_file)
83
84
85
86
87
88
89

        if pipeline is not None:
            self.pipeline = Compose(pipeline)

        self.ignore_index = len(self.CLASSES) if \
            ignore_index is None else ignore_index

90
        self.scene_idxs = self.get_scene_idxs(scene_idxs)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        self.CLASSES, self.PALETTE = \
            self.get_classes_and_palette(classes, palette)

        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def load_annotations(self, ann_file):
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations.
        """
107
108
        # loading data from a file-like object needs file format
        return mmcv.load(ann_file, file_format='pkl')
109
110
111
112
113
114
115
116

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
117
            dict: Data information that will be passed to the data
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = osp.join(self.data_root, info['pts_path'])

        input_dict = dict(
            pts_filename=pts_filename,
            sample_idx=sample_idx,
            file_name=pts_filename)

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
        return input_dict

    def pre_pipeline(self, results):
        """Initialization before data preparation.

        Args:
            results (dict): Dict before data preprocessing.

                - img_fields (list): Image fields.
                - pts_mask_fields (list): Mask fields of points.
                - pts_seg_fields (list): Mask fields of point segments.
                - mask_fields (list): Fields of masks.
                - seg_fields (list): Segment fields.
        """
        results['img_fields'] = []
        results['pts_mask_fields'] = []
        results['pts_seg_fields'] = []
        results['mask_fields'] = []
        results['seg_fields'] = []
156
        results['bbox3d_fields'] = []
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    def prepare_train_data(self, index):
        """Training data preparation.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Training data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)
        if input_dict is None:
            return None
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    def prepare_test_data(self, index):
        """Prepare data for testing.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Testing data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    def get_classes_and_palette(self, classes=None, palette=None):
        """Get class names of current dataset.

        This function is taken from MMSegmentation.

        Args:
194
            classes (Sequence[str] | str): If classes is None, use
195
196
197
198
199
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
                Defaults to None.
200
            palette (Sequence[Sequence[int]]] | np.ndarray):
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                The palette of segmentation map. If None is given, random
                palette will be generated. Defaults to None.
        """
        if classes is None:
            self.custom_classes = False
            # map id in the loaded mask to label used for training
            self.label_map = {
                cls_id: self.ignore_index
                for cls_id in self.ALL_CLASS_IDS
            }
            self.label_map.update(
                {cls_id: i
                 for i, cls_id in enumerate(self.VALID_CLASS_IDS)})
            # map label to category name
            self.label2cat = {
                i: cat_name
                for i, cat_name in enumerate(self.CLASSES)
            }
            return self.CLASSES, self.PALETTE

        self.custom_classes = True
        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        if self.CLASSES:
            if not set(class_names).issubset(self.CLASSES):
                raise ValueError('classes is not a subset of CLASSES.')

            # update valid_class_ids
            self.VALID_CLASS_IDS = [
                self.VALID_CLASS_IDS[self.CLASSES.index(cls_name)]
                for cls_name in class_names
            ]

            # dictionary, its keys are the old label ids and its values
            # are the new label ids.
            # used for changing pixel labels in load_annotations.
            self.label_map = {
                cls_id: self.ignore_index
                for cls_id in self.ALL_CLASS_IDS
            }
            self.label_map.update(
                {cls_id: i
                 for i, cls_id in enumerate(self.VALID_CLASS_IDS)})
            self.label2cat = {
                i: cat_name
                for i, cat_name in enumerate(class_names)
            }

        # modify palette for visualization
        palette = [
            self.PALETTE[self.CLASSES.index(cls_name)]
            for cls_name in class_names
        ]

        return class_names, palette

263
264
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
265

266
        We sample more times for scenes with more points.
267
268
269
        """
        if self.test_mode:
            # when testing, we load one whole scene every time
270
            return np.arange(len(self.data_infos)).astype(np.int32)
271

272
273
        # we may need to re-sample different scenes according to scene_idxs
        # this is necessary for indoor scene segmentation such as ScanNet
274
275
276
        if scene_idxs is None:
            scene_idxs = np.arange(len(self.data_infos))
        if isinstance(scene_idxs, str):
277
278
            with self.file_client.get_local_path(scene_idxs) as local_path:
                scene_idxs = np.load(local_path)
279
280
281
        else:
            scene_idxs = np.array(scene_idxs)

282
        return scene_idxs.astype(np.int32)
283
284
285
286
287
288
289
290
291

    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
292
            pklfile_prefix (str): The prefix of pkl files. It includes
293
294
295
296
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
297
298
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving json
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                files when ``jsonfile_prefix`` is not specified.
        """
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir

    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 show=False,
313
314
                 out_dir=None,
                 pipeline=None):
315
316
317
318
319
320
321
        """Evaluate.

        Evaluation in semantic segmentation protocol.

        Args:
            results (list[dict]): List of results.
            metric (str | list[str]): Metrics to be evaluated.
322
            logger (logging.Logger | str, optional): Logger used for printing
323
324
325
326
327
                related information during evaluation. Defaults to None.
            show (bool, optional): Whether to visualize.
                Defaults to False.
            out_dir (str, optional): Path to save the visualization results.
                Defaults to None.
328
329
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
330
331
332
333
334
335
336
337
338
339
340
341

        Returns:
            dict: Evaluation results.
        """
        from mmdet3d.core.evaluation import seg_eval
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
        assert len(results) > 0, 'Expect length of results > 0.'
        assert len(results) == len(self.data_infos)
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
342
343

        load_pipeline = self._get_pipeline(pipeline)
344
345
        pred_sem_masks = [result['semantic_mask'] for result in results]
        gt_sem_masks = [
346
347
348
            self._extract_data(
                i, load_pipeline, 'pts_semantic_mask', load_annos=True)
            for i in range(len(self.data_infos))
349
350
351
352
353
354
355
        ]
        ret_dict = seg_eval(
            gt_sem_masks,
            pred_sem_masks,
            self.label2cat,
            self.ignore_index,
            logger=logger)
356

357
        if show:
358
            self.show(pred_sem_masks, out_dir, pipeline=pipeline)
359
360
361
362
363
364
365
366
367
368
369
370

        return ret_dict

    def _rand_another(self, idx):
        """Randomly get another item with the same flag.

        Returns:
            int: Another index of item with the same flag.
        """
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

371
372
373
374
375
376
377
378
379
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        raise NotImplementedError('_build_default_pipeline is not implemented '
                                  f'for dataset {self.__class__.__name__}')

    def _get_pipeline(self, pipeline):
        """Get data loading pipeline in self.show/evaluate function.

        Args:
380
            pipeline (list[dict]): Input pipeline. If None is given,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
                get from self.pipeline.
        """
        if pipeline is None:
            if not hasattr(self, 'pipeline') or self.pipeline is None:
                warnings.warn(
                    'Use default pipeline for data loading, this may cause '
                    'errors when data is on ceph')
                return self._build_default_pipeline()
            loading_pipeline = get_loading_pipeline(self.pipeline.transforms)
            return Compose(loading_pipeline)
        return Compose(pipeline)

    def _extract_data(self, index, pipeline, key, load_annos=False):
        """Load data using input pipeline and extract data according to key.

        Args:
            index (int): Index for accessing the target data.
            pipeline (:obj:`Compose`): Composed data loading pipeline.
            key (str | list[str]): One single or a list of data key.
            load_annos (bool): Whether to load data annotations.
                If True, need to set self.test_mode as False before loading.

        Returns:
            np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]:
                A single or a list of loaded data.
        """
        assert pipeline is not None, 'data loading pipeline is not provided'
        # when we want to load ground-truth via pipeline (e.g. bbox, seg mask)
        # we need to set self.test_mode as False so that we have 'annos'
        if load_annos:
            original_test_mode = self.test_mode
            self.test_mode = False
        input_dict = self.get_data_info(index)
        self.pre_pipeline(input_dict)
        example = pipeline(input_dict)

        # extract data items according to keys
        if isinstance(key, str):
419
            data = extract_result_dict(example, key)
420
        else:
421
            data = [extract_result_dict(example, k) for k in key]
422
423
424
425
426
        if load_annos:
            self.test_mode = original_test_mode

        return data

427
428
429
430
431
432
433
434
435
436
437
    def __len__(self):
        """Return the length of scene_idxs.

        Returns:
            int: Length of data infos.
        """
        return len(self.scene_idxs)

    def __getitem__(self, idx):
        """Get item from infos according to the given index.

438
439
440
441
        In indoor scene segmentation task, each scene contains millions of
        points. However, we only sample less than 10k points within a patch
        each time. Therefore, we use `scene_idxs` to re-sample different rooms.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        Returns:
            dict: Data dictionary of the corresponding index.
        """
        scene_idx = self.scene_idxs[idx]  # map to scene idx
        if self.test_mode:
            return self.prepare_test_data(scene_idx)
        while True:
            data = self.prepare_train_data(scene_idx)
            if data is None:
                idx = self._rand_another(idx)
                scene_idx = self.scene_idxs[idx]  # map to scene idx
                continue
            return data

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0. In 3D datasets, they are all the same, thus are all
        zeros.
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)