"vscode:/vscode.git/clone" did not exist on "0d99adb715a536558d16baca978fce81e27f61c1"
test_sunrgbd_dataset.py 3.54 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
liyinhao's avatar
liyinhao committed
2
3
import pytest
import torch
liyinhao's avatar
liyinhao committed
4

5
from mmdet3d.datasets import SUNRGBDDataset
liyinhao's avatar
liyinhao committed
6
7
8
9


def test_getitem():
    np.random.seed(0)
10
    root_path = './tests/data/sunrgbd/sunrgbd_trainval'
liyinhao's avatar
liyinhao committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
    class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                   'dresser', 'night_stand', 'bookshelf', 'bathtub')
    pipelines = [
        dict(
            type='IndoorLoadPointsFromFile',
            use_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='IndoorFlipData', flip_ratio_yz=1.0),
        dict(
            type='IndoorGlobalRotScale',
            use_height=True,
            rot_range=[-np.pi / 6, np.pi / 6],
            scale_range=[0.85, 1.15]),
        dict(type='IndoorPointSample', num_points=5),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels']),
    ]

31
    sunrgbd_dataset = SUNRGBDDataset(root_path, ann_file, pipelines)
liyinhao's avatar
liyinhao committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    data = sunrgbd_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels = data['gt_labels']._data

    expected_points = np.array(
        [[0.6570105, 1.5538014, 0.24514851, 1.0165423],
         [0.656101, 1.558591, 0.21755838, 0.98895216],
         [0.6293659, 1.5679953, -0.10004003, 0.67135376],
         [0.6068739, 1.5974995, -0.41063973, 0.36075398],
         [0.6464709, 1.5573514, 0.15114647, 0.9225402]])
    expected_gt_bboxes_3d = np.array([[
        -2.012483, 3.9473376, -0.25446942, 2.3730404, 1.9457763, 2.0303352,
        1.2205974
    ],
                                      [
                                          -3.7036808, 4.2396426, -0.81091917,
                                          0.6032123, 0.91040343, 1.003341,
                                          1.2662518
                                      ],
                                      [
                                          0.6528646, 2.1638472, -0.15228128,
                                          0.7347852, 1.6113238, 2.1694272,
                                          2.81404
                                      ]])
    expected_gt_labels = np.array([0, 7, 6])

    assert np.allclose(points, expected_points)
    assert np.allclose(gt_bboxes_3d, expected_gt_bboxes_3d)
    assert np.all(gt_labels.numpy() == expected_gt_labels)
liyinhao's avatar
liyinhao committed
62
63
64
65
66
67
68
69


def test_evaluate():

    if not torch.cuda.is_available():
        pytest.skip()
    root_path = './tests/data/sunrgbd'
    ann_file = './tests/data/sunrgbd/sunrgbd_infos.pkl'
70
    sunrgbd_dataset = SUNRGBDDataset(root_path, ann_file)
liyinhao's avatar
liyinhao committed
71
72
    results = []
    pred_boxes = dict()
73
74
75
76
77
78
79
80
81
82
    pred_boxes['box3d_lidar'] = np.array(
        [[
            4.168696, -1.047307, -1.231666, 1.887584, 2.30207, 1.969614,
            1.69564944
        ],
         [
             4.811675, -2.583086, -1.273334, 0.883176, 0.585172, 0.973334,
             1.64999513
         ], [1.904545, 1.086364, -1.2, 1.563134, 0.71281, 2.104546,
             0.1022069]])
liyinhao's avatar
liyinhao committed
83
84
85
    pred_boxes['label_preds'] = torch.Tensor([0, 7, 6]).cuda()
    pred_boxes['scores'] = torch.Tensor([0.5, 1.0, 1.0]).cuda()
    results.append([pred_boxes])
liyinhao's avatar
liyinhao committed
86
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
87
    ap_dict = sunrgbd_dataset.evaluate(results, metric)
liyinhao's avatar
liyinhao committed
88
89
90
    bed_precision_25 = ap_dict['bed_AP_25']
    dresser_precision_25 = ap_dict['dresser_AP_25']
    night_stand_precision_25 = ap_dict['night_stand_AP_25']
liyinhao's avatar
liyinhao committed
91
92
93
    assert abs(bed_precision_25 - 1) < 0.01
    assert abs(dresser_precision_25 - 1) < 0.01
    assert abs(night_stand_precision_25 - 1) < 0.01