votenet.py 2.4 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
model = dict(
    type='VoteNet',
    backbone=dict(
        type='PointNet2SASSG',
        in_channels=4,
        num_points=(2048, 1024, 512, 256),
        radius=(0.2, 0.4, 0.8, 1.2),
        num_samples=(64, 32, 16, 16),
        sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                     (128, 128, 256)),
        fp_channels=((256, 256), (256, 256)),
        norm_cfg=dict(type='BN2d'),
13
14
15
16
17
        sa_cfg=dict(
            type='PointSAModule',
            pool_mod='max',
            use_xyz=True,
            normalize_xyz=True)),
liyinhao's avatar
liyinhao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    bbox_head=dict(
        type='VoteHead',
        vote_moudule_cfg=dict(
            in_channels=256,
            vote_per_seed=1,
            gt_per_seed=3,
            conv_channels=(256, 256),
            conv_cfg=dict(type='Conv1d'),
            norm_cfg=dict(type='BN1d'),
            norm_feats=True,
            vote_loss=dict(
                type='ChamferDistance',
                mode='l1',
                reduction='none',
                loss_dst_weight=10.0)),
        vote_aggregation_cfg=dict(
34
            type='PointSAModule',
liyinhao's avatar
liyinhao committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
            num_point=256,
            radius=0.3,
            num_sample=16,
            mlp_channels=[256, 128, 128, 128],
            use_xyz=True,
            normalize_xyz=True),
        feat_channels=(128, 128),
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        objectness_loss=dict(
            type='CrossEntropyLoss',
            class_weight=[0.2, 0.8],
            reduction='sum',
            loss_weight=5.0),
        center_loss=dict(
            type='ChamferDistance',
            mode='l2',
            reduction='sum',
            loss_src_weight=10.0,
            loss_dst_weight=10.0),
        dir_class_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        dir_res_loss=dict(
            type='SmoothL1Loss', reduction='sum', loss_weight=10.0),
        size_class_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        size_res_loss=dict(
            type='SmoothL1Loss', reduction='sum', loss_weight=10.0 / 3.0),
        semantic_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote')
test_cfg = dict(
    sample_mod='seed', nms_thr=0.25, score_thr=0.05, per_class_proposal=True)