kitti_det.md 11.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
2
3
4
5
6
# KITTI Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for KITTI dataset.

## Prepare dataset

7
You can download KITTI 3D detection data [HERE](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) and unzip all zip files. Besides, the road planes could be downloaded from [HERE](https://download.openmmlab.com/mmdetection3d/data/train_planes.zip), which are optional for data augmentation during training for better performance. The road planes are generated by [AVOD](https://github.com/kujason/avod), you can see more details [HERE](https://github.com/kujason/avod/issues/19).
dingchang's avatar
dingchang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Like the general way to prepare dataset, it is recommended to symlink the dataset root to `$MMDETECTION3D/data`.

The folder structure should be organized as follows before our processing.

```
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
30
│   │   │   ├── planes (optional)
dingchang's avatar
dingchang committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
```

### Create KITTI dataset

To create KITTI point cloud data, we load the raw point cloud data and generate the relevant annotations including object labels and bounding boxes. We also generate all single training objects' point cloud in KITTI dataset and save them as `.bin` files in `data/kitti/kitti_gt_database`. Meanwhile, `.pkl` info files are also generated for training or validation. Subsequently, create KITTI data by running

```bash
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt

46
47

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --with-plane
dingchang's avatar
dingchang committed
48
49
```

50
Note that if your local disk does not have enough space for saving converted data, you can change the `out-dir` to anywhere else, and you need to remove the `--with-plane` flag if `planes` are not prepared.
dingchang's avatar
dingchang committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

The folder structure after processing should be as below

```
kitti
├── ImageSets
│   ├── test.txt
│   ├── train.txt
│   ├── trainval.txt
│   ├── val.txt
├── testing
│   ├── calib
│   ├── image_2
│   ├── velodyne
│   ├── velodyne_reduced
├── training
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── velodyne
│   ├── velodyne_reduced
72
│   ├── planes (optional)
dingchang's avatar
dingchang committed
73
74
75
76
77
78
79
80
81
82
├── kitti_gt_database
│   ├── xxxxx.bin
├── kitti_infos_train.pkl
├── kitti_infos_val.pkl
├── kitti_dbinfos_train.pkl
├── kitti_infos_test.pkl
├── kitti_infos_trainval.pkl
```

- `kitti_gt_database/xxxxx.bin`: point cloud data included in each 3D bounding box of the training dataset
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
- `kitti_infos_train.pkl`: training dataset info, each frame info has two keys: `metainfo` and `data_list`.
  `metainfo` is a dict, it contains the essential information for the dataset, such as `CLASSES` and `version`.
  `data_list` is a list, it has all the needed data information, and each item is detailed information dict for a single sample. Detailed information is as follows:
  - info\['sample_idx'\]: The index of this sample in the whole dataset.
  - info\['images'\]: Information of images captured by multiple cameras. A dict contains five keys including: `CAM0`, `CAM1`, `CAM2`, `CAM3`, `R0_rect`.
    - info\['images'\]\['R0_rect'\]: Rectifying rotation matrix with shape (4, 4).
    - info\['images'\]\['CAM2'\]: Include some information about the `CAM2` camera sensor.
      - info\['images'\]\['CAM2'\]\['img_path'\]: The path to the image file.
      - info\['images'\]\['CAM2'\]\['height'\]: The height of the image.
      - info\['images'\]\['CAM2'\]\['width'\]: The width of the image.
      - info\['images'\]\['CAM2'\]\['cam2img'\]: Transformation matrix from camera to image with shape (4, 4).
      - info\['images'\]\['CAM2'\]\['lidar2cam'\]: Transformation matrix from lidar to camera with shape (4, 4).
      - info\['images'\]\['CAM2'\]\['lidar2img'\]: Transformation matrix from lidar to image with shape (4, 4).
  - info\['lidar_points'\]: Information of point cloud captured by Lidar. A dict contains information of LiDAR point cloud frame.
    - info\['lidar_points'\]\['lidar_path'\]: The file path of the lidar point cloud data.
    - info\['lidar_points'\]\['num_features'\]: Number of features for each point.
    - info\['lidar_points'\]\['Tr_velo_to_cam'\]: Transformation from Velodyne coordinate to camera coordinate with shape (4, 4).
    - info\['lidar_points'\]\['Tr_imu_to_velo'\]: Transformation from IMU coordinate to Velodyne coordinate with shape (4, 4).
  - info\['instances'\]: Required by object detection task. A list contains some dict of instance infos. Each dict corresponds to annotations of one instance in this frame.
    - info\['instances'\]\['bbox'\]: List of 4 numbers representing the 2D bounding box of the instance, in (x1, y1, x2, y2) order.
    - info\['instances'\]\['bbox_3d'\]: List of 7 numbers representing the 3D bounding box of the instance, in (x, y, z, w, h, l, yaw) order.
    - info\['instances'\]\['bbox_label'\]: An int indicate the 2D label of instance and the -1 indicating ignore.
    - info\['instances'\]\['bbox_label_3d'\]: An int indicate the 3D label of instance and the -1 indicating ignore.
    - info\['instances'\]\['depth'\]: Projected center depth of the 3D bounding box with respect to the image plane.
    - info\['instances'\]\['num_lidar_pts'\]: The number of LiDAR points in the 3D bounding box.
    - info\['instances'\]\['center_2d'\]: Projected 2D center of the 3D bounding box.
    - info\['instances'\]\['difficulty'\]: Kitti difficulty, Easy, Moderate, Hard.
    - info\['instances'\]\['truncated'\]: The instances bbox is truncated.
    - info\['instances'\]\['occluded'\]: The instances bbox is semi occluded or fully occluded.
    - info\['instances'\]\['group_ids'\]: Used for multi-part object.
  - info\['plane'\](optional): Road level information.

Please refer to [kitti_converter.py](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/tools/dataset_converters/kitti_converter.py) and [update_infos_to_v2.py ](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/tools/dataset_converters/update_infos_to_v2.py) for more details.
dingchang's avatar
dingchang committed
116
117
118
119
120
121
122

## Train pipeline

A typical train pipeline of 3D detection on KITTI is as below.

```python
train_pipeline = [
123
124
125
126
127
    dict(type='LoadPointsFromFile',
         coord_type='LIDAR',
         load_dim=4, # x, y, z, intensity
         use_dim=4),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dingchang's avatar
dingchang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
143
144
145
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
dingchang's avatar
dingchang committed
146
147
148
149
]
```

- Data augmentation:
150
151
152
  - `ObjectNoise`: apply noise to each GT objects in the scene.
  - `RandomFlip3D`: randomly flip input point cloud horizontally or vertically.
  - `GlobalRotScaleTrans`: rotate input point cloud.
dingchang's avatar
dingchang committed
153
154
155
156
157
158

## Evaluation

An example to evaluate PointPillars with 8 GPUs with kitti metrics is as follows:

```shell
159
bash tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py work_dirs/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8
dingchang's avatar
dingchang committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
```

## Metrics

KITTI evaluates 3D object detection performance using mean Average Precision (mAP) and Average Orientation Similarity (AOS), Please refer to its [official website](http://www.cvlibs.net/datasets/kitti/eval_3dobject.php) and [original paper](http://www.cvlibs.net/publications/Geiger2012CVPR.pdf) for more details.

We also adopt this approach for evaluation on KITTI. An example of printed evaluation results is as follows:

```
Car AP@0.70, 0.70, 0.70:
bbox AP:97.9252, 89.6183, 88.1564
bev  AP:90.4196, 87.9491, 85.1700
3d   AP:88.3891, 77.1624, 74.4654
aos  AP:97.70, 89.11, 87.38
Car AP@0.70, 0.50, 0.50:
bbox AP:97.9252, 89.6183, 88.1564
bev  AP:98.3509, 90.2042, 89.6102
3d   AP:98.2800, 90.1480, 89.4736
aos  AP:97.70, 89.11, 87.38
```

## Testing and make a submission

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
An example to test PointPillars on KITTI with 8 GPUs and generate a submission to the leaderboard. An example to test PointPillars on KITTI with 8 GPUs and generate a submission to the leaderboard is as follows:

- First, you need to modify the `test_evaluator` dict in your config file to add `pklfile_prefix` and `submission_prefix`, just like:

```python
data_root = 'data/kitti/'
test_evaluator = dict(
    type='KittiMetric',
    ann_file=data_root + 'kitti_infos_val.pkl',
    metric='bbox',
    pklfile_prefix='results/kitti-3class/kitti_results',
    submission_prefix='results/kitti-3class/kitti_results')
```

- And then, you can run the test script.

```shell
mkdir -p results/kitti-3class

./tools/dist_test.sh configs/pointpillars/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py work_dirs/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8
```

- Or you can use `--cfg-options "test_evaluator.jsonfile_prefix=work_dirs/pp-nus/results_eval.json)` after the test command, and run test script directly.
dingchang's avatar
dingchang committed
206
207
208
209

```shell
mkdir -p results/kitti-3class

210
./tools/dist_test.sh configs/pointpillars/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py work_dirs/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8 --cfg-options 'test_evaluator.pklfile_prefix=results/kitti-3class/kitti_results' 'test_evaluator.submission_prefix=results/kitti-3class/kitti_results'
dingchang's avatar
dingchang committed
211
212
213
```

After generating `results/kitti-3class/kitti_results/xxxxx.txt` files, you can submit these files to KITTI benchmark. Please refer to the [KITTI official website](http://www.cvlibs.net/datasets/kitti/index.php) for more details.