kitti2d_dataset.py 4.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
import mmcv
import numpy as np

from mmdet.datasets import DATASETS, CustomDataset


7
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class Kitti2DDataset(CustomDataset):

    CLASSES = ('car', 'pedestrian', 'cyclist')
    """
    Annotation format:
    [
        {
            'image': {
                'image_idx': 0,
                'image_path': 'training/image_2/000000.png',
                'image_shape': array([ 370, 1224], dtype=int32)
            },
            'point_cloud': {
                 'num_features': 4,
                 'velodyne_path': 'training/velodyne/000000.bin'
             },
             'calib': {
                 'P0': <np.ndarray> (4, 4),
                 'P1': <np.ndarray> (4, 4),
                 'P2': <np.ndarray> (4, 4),
                 'P3': <np.ndarray> (4, 4),
                 'R0_rect':4x4 np.array,
                 'Tr_velo_to_cam': 4x4 np.array,
                 'Tr_imu_to_velo': 4x4 np.array
             },
             'annos': {
                 'name': <np.ndarray> (n),
                 'truncated': <np.ndarray> (n),
                 'occluded': <np.ndarray> (n),
                 'alpha': <np.ndarray> (n),
                 'bbox': <np.ndarray> (n, 4),
                 'dimensions': <np.ndarray> (n, 3),
                 'location': <np.ndarray> (n, 3),
                 'rotation_y': <np.ndarray> (n),
                 'score': <np.ndarray> (n),
                 'index': array([0], dtype=int32),
                 'group_ids': array([0], dtype=int32),
                 'difficulty': array([0], dtype=int32),
                 'num_points_in_gt': <np.ndarray> (n),
             }
        }
    ]
    """

    def load_annotations(self, ann_file):
        self.data_infos = mmcv.load(ann_file)
        self.cat2label = {
            cat_name: i
56
            for i, cat_name in enumerate(self.CLASSES)
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        }
        return self.data_infos

    def _filter_imgs(self, min_size=32):
        """Filter images without ground truths."""
        valid_inds = []
        for i, img_info in enumerate(self.data_infos):
            if len(img_info['annos']['name']) > 0:
                valid_inds.append(i)
        return valid_inds

    def get_ann_info(self, index):
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]
        annos = info['annos']
        gt_names = annos['name']
        gt_bboxes = annos['bbox']
        difficulty = annos['difficulty']

        # remove classes that is not needed
        selected = self.keep_arrays_by_name(gt_names, self.CLASSES)
        gt_bboxes = gt_bboxes[selected]
        gt_names = gt_names[selected]
        difficulty = difficulty[selected]
        gt_labels = np.array([self.cat2label[n] for n in gt_names])

        anns_results = dict(
            bboxes=gt_bboxes.astype(np.float32),
            labels=gt_labels,
        )
        return anns_results

    def prepare_train_img(self, idx):
        img_raw_info = self.data_infos[idx]['image']
        img_info = dict(filename=img_raw_info['image_path'])
        ann_info = self.get_ann_info(idx)
        if len(ann_info['bboxes']) == 0:
            return None
        results = dict(img_info=img_info, ann_info=ann_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    def prepare_test_img(self, idx):
        img_raw_info = self.data_infos[idx]['image']
        img_info = dict(filename=img_raw_info['image_path'])
        results = dict(img_info=img_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    def drop_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def reformat_bbox(self, outputs, out=None):
        from mmdet3d.core.bbox.transforms import bbox2result_kitti2d
        sample_idx = [info['image']['image_idx'] for info in self.data_infos]
        result_files = bbox2result_kitti2d(outputs, self.CLASSES, sample_idx,
                                           out)
        return result_files

    def evaluate(self, result_files, eval_types=None):
        from mmdet3d.core.evaluation import kitti_eval
        eval_types = ['bbox'] if not eval_types else eval_types
        assert eval_types in ('bbox', ['bbox'
                                       ]), 'KITTI data set only evaluate bbox'
        gt_annos = [info['annos'] for info in self.data_infos]
        ap_result_str, ap_dict = kitti_eval(
            gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
        return ap_result_str, ap_dict