".github/workflows/pr_test_linux.yaml" did not exist on "ed4a401ce84f7561da4b943522c3860e5ea92100"
h3dnet.py 10.6 KB
Newer Older
encore-zhou's avatar
encore-zhou committed
1
2
3
4
5
6
7
primitive_z_cfg = dict(
    type='PrimitiveHead',
    num_dims=2,
    num_classes=18,
    primitive_mode='z',
    upper_thresh=100.0,
    surface_thresh=0.5,
8
    vote_module_cfg=dict(
encore-zhou's avatar
encore-zhou committed
9
10
11
12
13
14
15
16
17
18
19
20
21
        in_channels=256,
        vote_per_seed=1,
        gt_per_seed=1,
        conv_channels=(256, 256),
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        norm_feats=True,
        vote_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='none',
            loss_dst_weight=10.0)),
    vote_aggregation_cfg=dict(
22
        type='PointSAModule',
encore-zhou's avatar
encore-zhou committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        num_point=1024,
        radius=0.3,
        num_sample=16,
        mlp_channels=[256, 128, 128, 128],
        use_xyz=True,
        normalize_xyz=True),
    feat_channels=(128, 128),
    conv_cfg=dict(type='Conv1d'),
    norm_cfg=dict(type='BN1d'),
    objectness_loss=dict(
        type='CrossEntropyLoss',
        class_weight=[0.4, 0.6],
        reduction='mean',
        loss_weight=30.0),
    center_loss=dict(
        type='ChamferDistance',
        mode='l1',
        reduction='sum',
        loss_src_weight=0.5,
        loss_dst_weight=0.5),
    semantic_reg_loss=dict(
        type='ChamferDistance',
        mode='l1',
        reduction='sum',
        loss_src_weight=0.5,
        loss_dst_weight=0.5),
    semantic_cls_loss=dict(
        type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
    train_cfg=dict(
        dist_thresh=0.2,
        var_thresh=1e-2,
        lower_thresh=1e-6,
        num_point=100,
        num_point_line=10,
        line_thresh=0.2))

primitive_xy_cfg = dict(
    type='PrimitiveHead',
    num_dims=1,
    num_classes=18,
    primitive_mode='xy',
    upper_thresh=100.0,
    surface_thresh=0.5,
66
    vote_module_cfg=dict(
encore-zhou's avatar
encore-zhou committed
67
68
69
70
71
72
73
74
75
76
77
78
79
        in_channels=256,
        vote_per_seed=1,
        gt_per_seed=1,
        conv_channels=(256, 256),
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        norm_feats=True,
        vote_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='none',
            loss_dst_weight=10.0)),
    vote_aggregation_cfg=dict(
80
        type='PointSAModule',
encore-zhou's avatar
encore-zhou committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        num_point=1024,
        radius=0.3,
        num_sample=16,
        mlp_channels=[256, 128, 128, 128],
        use_xyz=True,
        normalize_xyz=True),
    feat_channels=(128, 128),
    conv_cfg=dict(type='Conv1d'),
    norm_cfg=dict(type='BN1d'),
    objectness_loss=dict(
        type='CrossEntropyLoss',
        class_weight=[0.4, 0.6],
        reduction='mean',
        loss_weight=30.0),
    center_loss=dict(
        type='ChamferDistance',
        mode='l1',
        reduction='sum',
        loss_src_weight=0.5,
        loss_dst_weight=0.5),
    semantic_reg_loss=dict(
        type='ChamferDistance',
        mode='l1',
        reduction='sum',
        loss_src_weight=0.5,
        loss_dst_weight=0.5),
    semantic_cls_loss=dict(
        type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
    train_cfg=dict(
        dist_thresh=0.2,
        var_thresh=1e-2,
        lower_thresh=1e-6,
        num_point=100,
        num_point_line=10,
        line_thresh=0.2))

primitive_line_cfg = dict(
    type='PrimitiveHead',
    num_dims=0,
    num_classes=18,
    primitive_mode='line',
    upper_thresh=100.0,
    surface_thresh=0.5,
124
    vote_module_cfg=dict(
encore-zhou's avatar
encore-zhou committed
125
126
127
128
129
130
131
132
133
134
135
136
137
        in_channels=256,
        vote_per_seed=1,
        gt_per_seed=1,
        conv_channels=(256, 256),
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        norm_feats=True,
        vote_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='none',
            loss_dst_weight=10.0)),
    vote_aggregation_cfg=dict(
138
        type='PointSAModule',
encore-zhou's avatar
encore-zhou committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        num_point=1024,
        radius=0.3,
        num_sample=16,
        mlp_channels=[256, 128, 128, 128],
        use_xyz=True,
        normalize_xyz=True),
    feat_channels=(128, 128),
    conv_cfg=dict(type='Conv1d'),
    norm_cfg=dict(type='BN1d'),
    objectness_loss=dict(
        type='CrossEntropyLoss',
        class_weight=[0.4, 0.6],
        reduction='mean',
        loss_weight=30.0),
    center_loss=dict(
        type='ChamferDistance',
        mode='l1',
        reduction='sum',
        loss_src_weight=1.0,
        loss_dst_weight=1.0),
    semantic_reg_loss=dict(
        type='ChamferDistance',
        mode='l1',
        reduction='sum',
        loss_src_weight=1.0,
        loss_dst_weight=1.0),
    semantic_cls_loss=dict(
        type='CrossEntropyLoss', reduction='sum', loss_weight=2.0),
    train_cfg=dict(
        dist_thresh=0.2,
        var_thresh=1e-2,
        lower_thresh=1e-6,
        num_point=100,
        num_point_line=10,
        line_thresh=0.2))

model = dict(
    type='H3DNet',
    backbone=dict(
        type='MultiBackbone',
        num_streams=4,
        suffixes=['net0', 'net1', 'net2', 'net3'],
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d', eps=1e-5, momentum=0.01),
        act_cfg=dict(type='ReLU'),
        backbones=dict(
            type='PointNet2SASSG',
            in_channels=4,
            num_points=(2048, 1024, 512, 256),
            radius=(0.2, 0.4, 0.8, 1.2),
            num_samples=(64, 32, 16, 16),
            sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                         (128, 128, 256)),
            fp_channels=((256, 256), (256, 256)),
            norm_cfg=dict(type='BN2d'),
194
195
196
197
198
            sa_cfg=dict(
                type='PointSAModule',
                pool_mod='max',
                use_xyz=True,
                normalize_xyz=True))),
encore-zhou's avatar
encore-zhou committed
199
200
    rpn_head=dict(
        type='VoteHead',
201
        vote_module_cfg=dict(
encore-zhou's avatar
encore-zhou committed
202
203
204
205
206
207
208
209
210
211
212
213
214
            in_channels=256,
            vote_per_seed=1,
            gt_per_seed=3,
            conv_channels=(256, 256),
            conv_cfg=dict(type='Conv1d'),
            norm_cfg=dict(type='BN1d'),
            norm_feats=True,
            vote_loss=dict(
                type='ChamferDistance',
                mode='l1',
                reduction='none',
                loss_dst_weight=10.0)),
        vote_aggregation_cfg=dict(
215
            type='PointSAModule',
encore-zhou's avatar
encore-zhou committed
216
217
218
219
220
221
            num_point=256,
            radius=0.3,
            num_sample=16,
            mlp_channels=[256, 128, 128, 128],
            use_xyz=True,
            normalize_xyz=True),
222
223
        pred_layer_cfg=dict(
            in_channels=128, shared_conv_channels=(128, 128), bias=True),
encore-zhou's avatar
encore-zhou committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        objectness_loss=dict(
            type='CrossEntropyLoss',
            class_weight=[0.2, 0.8],
            reduction='sum',
            loss_weight=5.0),
        center_loss=dict(
            type='ChamferDistance',
            mode='l2',
            reduction='sum',
            loss_src_weight=10.0,
            loss_dst_weight=10.0),
        dir_class_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        dir_res_loss=dict(
            type='SmoothL1Loss', reduction='sum', loss_weight=10.0),
        size_class_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        size_res_loss=dict(
            type='SmoothL1Loss', reduction='sum', loss_weight=10.0),
        semantic_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)),
    roi_head=dict(
        type='H3DRoIHead',
        primitive_list=[primitive_z_cfg, primitive_xy_cfg, primitive_line_cfg],
        bbox_head=dict(
            type='H3DBboxHead',
            gt_per_seed=3,
            num_proposal=256,
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            suface_matching_cfg=dict(
                type='PointSAModule',
                num_point=256 * 6,
                radius=0.5,
                num_sample=32,
                mlp_channels=[128 + 6, 128, 64, 32],
                use_xyz=True,
                normalize_xyz=True),
            line_matching_cfg=dict(
                type='PointSAModule',
                num_point=256 * 12,
                radius=0.5,
                num_sample=32,
                mlp_channels=[128 + 12, 128, 64, 32],
                use_xyz=True,
                normalize_xyz=True),
encore-zhou's avatar
encore-zhou committed
270
            feat_channels=(128, 128),
271
272
273
274
            primitive_refine_channels=[128, 128, 128],
            upper_thresh=100.0,
            surface_thresh=0.5,
            line_thresh=0.5,
encore-zhou's avatar
encore-zhou committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            conv_cfg=dict(type='Conv1d'),
            norm_cfg=dict(type='BN1d'),
            objectness_loss=dict(
                type='CrossEntropyLoss',
                class_weight=[0.2, 0.8],
                reduction='sum',
                loss_weight=5.0),
            center_loss=dict(
                type='ChamferDistance',
                mode='l2',
                reduction='sum',
                loss_src_weight=10.0,
                loss_dst_weight=10.0),
            dir_class_loss=dict(
                type='CrossEntropyLoss', reduction='sum', loss_weight=0.1),
            dir_res_loss=dict(
                type='SmoothL1Loss', reduction='sum', loss_weight=10.0),
            size_class_loss=dict(
                type='CrossEntropyLoss', reduction='sum', loss_weight=0.1),
            size_res_loss=dict(
                type='SmoothL1Loss', reduction='sum', loss_weight=10.0),
            semantic_loss=dict(
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
                type='CrossEntropyLoss', reduction='sum', loss_weight=0.1),
            cues_objectness_loss=dict(
                type='CrossEntropyLoss',
                class_weight=[0.3, 0.7],
                reduction='mean',
                loss_weight=5.0),
            cues_semantic_loss=dict(
                type='CrossEntropyLoss',
                class_weight=[0.3, 0.7],
                reduction='mean',
                loss_weight=5.0),
            proposal_objectness_loss=dict(
                type='CrossEntropyLoss',
                class_weight=[0.2, 0.8],
                reduction='none',
                loss_weight=5.0),
            primitive_center_loss=dict(
                type='MSELoss', reduction='none', loss_weight=1.0))))
encore-zhou's avatar
encore-zhou committed
315
316
317
318
319

# model training and testing settings
train_cfg = dict(
    rpn=dict(pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote'),
    rpn_proposal=dict(use_nms=False),
320
321
322
323
324
325
326
327
328
329
    rcnn=dict(
        pos_distance_thr=0.3,
        neg_distance_thr=0.6,
        sample_mod='vote',
        far_threshold=0.6,
        near_threshold=0.3,
        mask_surface_threshold=0.3,
        label_surface_threshold=0.3,
        mask_line_threshold=0.3,
        label_line_threshold=0.3))
encore-zhou's avatar
encore-zhou committed
330
331
332
333
334
335
336
337
338
339
340
341
342

test_cfg = dict(
    rpn=dict(
        sample_mod='seed',
        nms_thr=0.25,
        score_thr=0.05,
        per_class_proposal=True,
        use_nms=False),
    rcnn=dict(
        sample_mod='seed',
        nms_thr=0.25,
        score_thr=0.05,
        per_class_proposal=True))