point_fusion.py 11.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import torch
2
3
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
zhangwenwei's avatar
zhangwenwei committed
4
5
from torch import nn as nn
from torch.nn import functional as F
zhangwenwei's avatar
zhangwenwei committed
6

7
from ..builder import FUSION_LAYERS
8
from . import apply_3d_transformation
zhangwenwei's avatar
zhangwenwei committed
9
10
11


def point_sample(
12
    img_meta,
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17
18
19
20
21
22
23
24
    img_features,
    points,
    lidar2img_rt,
    img_scale_factor,
    img_crop_offset,
    img_flip,
    img_pad_shape,
    img_shape,
    aligned=True,
    padding_mode='zeros',
    align_corners=True,
):
zhangwenwei's avatar
zhangwenwei committed
25
    """Obtain image features using points.
zhangwenwei's avatar
zhangwenwei committed
26

zhangwenwei's avatar
zhangwenwei committed
27
    Args:
28
        img_meta (dict): Meta info.
wangtai's avatar
wangtai committed
29
30
31
32
33
34
35
        img_features (torch.Tensor): 1 x C x H x W image features.
        points (torch.Tensor): Nx3 point cloud in LiDAR coordinates.
        lidar2img_rt (torch.Tensor): 4x4 transformation matrix.
        img_scale_factor (torch.Tensor): Scale factor with shape of \
            (w_scale, h_scale).
        img_crop_offset (torch.Tensor): Crop offset used to crop \
            image during data augmentation with shape of (w_offset, h_offset).
zhangwenwei's avatar
zhangwenwei committed
36
37
        img_flip (bool): Whether the image is flipped.
        img_pad_shape (tuple[int]): int tuple indicates the h & w after
wangtai's avatar
wangtai committed
38
            padding, this is necessary to obtain features in feature map.
zhangwenwei's avatar
zhangwenwei committed
39
        img_shape (tuple[int]): int tuple indicates the h & w before padding
wangtai's avatar
wangtai committed
40
            after scaling, this is necessary for flipping coordinates.
zhangwenwei's avatar
zhangwenwei committed
41
42
43
44
45
46
47
48
        aligned (bool, optional): Whether use bilinear interpolation when
            sampling image features for each point. Defaults to True.
        padding_mode (str, optional): Padding mode when padding values for
            features of out-of-image points. Defaults to 'zeros'.
        align_corners (bool, optional): Whether to align corners when
            sampling image features for each point. Defaults to True.

    Returns:
wangtai's avatar
wangtai committed
49
        torch.Tensor: NxC image features sampled by point coordinates.
zhangwenwei's avatar
zhangwenwei committed
50
    """
51
52
53

    # apply transformation based on info in img_meta
    points = apply_3d_transformation(points, 'LIDAR', img_meta, reverse=True)
zhangwenwei's avatar
zhangwenwei committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

    # project points from velo coordinate to camera coordinate
    num_points = points.shape[0]
    pts_4d = torch.cat([points, points.new_ones(size=(num_points, 1))], dim=-1)
    pts_2d = pts_4d @ lidar2img_rt.t()

    # cam_points is Tensor of Nx4 whose last column is 1
    # transform camera coordinate to image coordinate

    pts_2d[:, 2] = torch.clamp(pts_2d[:, 2], min=1e-5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]

    # img transformation: scale -> crop -> flip
    # the image is resized by img_scale_factor
    img_coors = pts_2d[:, 0:2] * img_scale_factor  # Nx2
    img_coors -= img_crop_offset

    # grid sample, the valid grid range should be in [-1,1]
    coor_x, coor_y = torch.split(img_coors, 1, dim=1)  # each is Nx1

    if img_flip:
        # by default we take it as horizontal flip
        # use img_shape before padding for flip
        orig_h, orig_w = img_shape
        coor_x = orig_w - coor_x

    h, w = img_pad_shape
    coor_y = coor_y / h * 2 - 1
    coor_x = coor_x / w * 2 - 1
    grid = torch.cat([coor_x, coor_y],
                     dim=1).unsqueeze(0).unsqueeze(0)  # Nx2 -> 1x1xNx2

    # align_corner=True provides higher performance
    mode = 'bilinear' if aligned else 'nearest'
    point_features = F.grid_sample(
        img_features,
        grid,
        mode=mode,
        padding_mode=padding_mode,
        align_corners=align_corners)  # 1xCx1xN feats

    return point_features.squeeze().t()


99
@FUSION_LAYERS.register_module()
100
class PointFusion(BaseModule):
zhangwenwei's avatar
zhangwenwei committed
101
    """Fuse image features from multi-scale features.
zhangwenwei's avatar
zhangwenwei committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    Args:
        img_channels (list[int] | int): Channels of image features.
            It could be a list if the input is multi-scale image features.
        pts_channels (int): Channels of point features
        mid_channels (int): Channels of middle layers
        out_channels (int): Channels of output fused features
        img_levels (int, optional): Number of image levels. Defaults to 3.
        conv_cfg (dict, optional): Dict config of conv layers of middle
            layers. Defaults to None.
        norm_cfg (dict, optional): Dict config of norm layers of middle
            layers. Defaults to None.
        act_cfg (dict, optional): Dict config of activatation layers.
            Defaults to None.
        activate_out (bool, optional): Whether to apply relu activation
            to output features. Defaults to True.
        fuse_out (bool, optional): Whether apply conv layer to the fused
            features. Defaults to False.
        dropout_ratio (int, float, optional): Dropout ratio of image
            features to prevent overfitting. Defaults to 0.
        aligned (bool, optional): Whether apply aligned feature fusion.
            Defaults to True.
        align_corners (bool, optional): Whether to align corner when
            sampling features according to points. Defaults to True.
        padding_mode (str, optional): Mode used to pad the features of
            points that do not have corresponding image features.
            Defaults to 'zeros'.
        lateral_conv (bool, optional): Whether to apply lateral convs
            to image features. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
131
132
133
134
135
136
137
138
139
140
    """

    def __init__(self,
                 img_channels,
                 pts_channels,
                 mid_channels,
                 out_channels,
                 img_levels=3,
                 conv_cfg=None,
                 norm_cfg=None,
zhangwenwei's avatar
zhangwenwei committed
141
                 act_cfg=None,
142
                 init_cfg=None,
zhangwenwei's avatar
zhangwenwei committed
143
144
145
146
147
148
149
                 activate_out=True,
                 fuse_out=False,
                 dropout_ratio=0,
                 aligned=True,
                 align_corners=True,
                 padding_mode='zeros',
                 lateral_conv=True):
150
        super(PointFusion, self).__init__(init_cfg=init_cfg)
zhangwenwei's avatar
zhangwenwei committed
151
152
153
154
155
156
157
158
159
        if isinstance(img_levels, int):
            img_levels = [img_levels]
        if isinstance(img_channels, int):
            img_channels = [img_channels] * len(img_levels)
        assert isinstance(img_levels, list)
        assert isinstance(img_channels, list)
        assert len(img_channels) == len(img_levels)

        self.img_levels = img_levels
zhangwenwei's avatar
zhangwenwei committed
160
        self.act_cfg = act_cfg
zhangwenwei's avatar
zhangwenwei committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        self.activate_out = activate_out
        self.fuse_out = fuse_out
        self.dropout_ratio = dropout_ratio
        self.img_channels = img_channels
        self.aligned = aligned
        self.align_corners = align_corners
        self.padding_mode = padding_mode

        self.lateral_convs = None
        if lateral_conv:
            self.lateral_convs = nn.ModuleList()
            for i in range(len(img_channels)):
                l_conv = ConvModule(
                    img_channels[i],
                    mid_channels,
                    3,
                    padding=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
zhangwenwei's avatar
zhangwenwei committed
180
                    act_cfg=self.act_cfg,
zhangwenwei's avatar
zhangwenwei committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                    inplace=False)
                self.lateral_convs.append(l_conv)
            self.img_transform = nn.Sequential(
                nn.Linear(mid_channels * len(img_channels), out_channels),
                nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
            )
        else:
            self.img_transform = nn.Sequential(
                nn.Linear(sum(img_channels), out_channels),
                nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
            )
        self.pts_transform = nn.Sequential(
            nn.Linear(pts_channels, out_channels),
            nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        )

        if self.fuse_out:
            self.fuse_conv = nn.Sequential(
                nn.Linear(mid_channels, out_channels),
                # For pts the BN is initialized differently by default
                # TODO: check whether this is necessary
                nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
                nn.ReLU(inplace=False))

205
206
207
208
209
        if init_cfg is None:
            self.init_cfg = [
                dict(type='Xavier', layer='Conv2d', distribution='uniform'),
                dict(type='Xavier', layer='Linear', distribution='uniform')
            ]
zhangwenwei's avatar
zhangwenwei committed
210

zhangwenwei's avatar
zhangwenwei committed
211
    def forward(self, img_feats, pts, pts_feats, img_metas):
zhangwenwei's avatar
zhangwenwei committed
212
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
213
214

        Args:
wangtai's avatar
wangtai committed
215
216
217
218
219
            img_feats (list[torch.Tensor]): Image features.
            pts: [list[torch.Tensor]]: A batch of points with shape N x 3.
            pts_feats (torch.Tensor): A tensor consist of point features of the
                total batch.
            img_metas (list[dict]): Meta information of images.
zhangwenwei's avatar
zhangwenwei committed
220

zhangwenwei's avatar
zhangwenwei committed
221
        Returns:
wangtai's avatar
wangtai committed
222
            torch.Tensor: Fused features of each point.
zhangwenwei's avatar
zhangwenwei committed
223
        """
zhangwenwei's avatar
zhangwenwei committed
224
        img_pts = self.obtain_mlvl_feats(img_feats, pts, img_metas)
zhangwenwei's avatar
zhangwenwei committed
225
226
227
228
229
230
231
232
233
234
235
236
237
        img_pre_fuse = self.img_transform(img_pts)
        if self.training and self.dropout_ratio > 0:
            img_pre_fuse = F.dropout(img_pre_fuse, self.dropout_ratio)
        pts_pre_fuse = self.pts_transform(pts_feats)

        fuse_out = img_pre_fuse + pts_pre_fuse
        if self.activate_out:
            fuse_out = F.relu(fuse_out)
        if self.fuse_out:
            fuse_out = self.fuse_conv(fuse_out)

        return fuse_out

zhangwenwei's avatar
zhangwenwei committed
238
    def obtain_mlvl_feats(self, img_feats, pts, img_metas):
239
240
241
242
243
244
245
246
247
248
249
        """Obtain multi-level features for each point.

        Args:
            img_feats (list(torch.Tensor)): Multi-scale image features produced
                by image backbone in shape (N, C, H, W).
            pts (list[torch.Tensor]): Points of each sample.
            img_metas (list[dict]): Meta information for each sample.

        Returns:
            torch.Tensor: Corresponding image features of each point.
        """
zhangwenwei's avatar
zhangwenwei committed
250
251
252
253
254
255
256
257
258
        if self.lateral_convs is not None:
            img_ins = [
                lateral_conv(img_feats[i])
                for i, lateral_conv in zip(self.img_levels, self.lateral_convs)
            ]
        else:
            img_ins = img_feats
        img_feats_per_point = []
        # Sample multi-level features
zhangwenwei's avatar
zhangwenwei committed
259
        for i in range(len(img_metas)):
zhangwenwei's avatar
zhangwenwei committed
260
261
262
263
            mlvl_img_feats = []
            for level in range(len(self.img_levels)):
                mlvl_img_feats.append(
                    self.sample_single(img_ins[level][i:i + 1], pts[i][:, :3],
zhangwenwei's avatar
zhangwenwei committed
264
                                       img_metas[i]))
zhangwenwei's avatar
zhangwenwei committed
265
266
267
268
269
270
271
            mlvl_img_feats = torch.cat(mlvl_img_feats, dim=-1)
            img_feats_per_point.append(mlvl_img_feats)

        img_pts = torch.cat(img_feats_per_point, dim=0)
        return img_pts

    def sample_single(self, img_feats, pts, img_meta):
272
273
274
275
        """Sample features from single level image feature map.

        Args:
            img_feats (torch.Tensor): Image feature map in shape
276
                (1, C, H, W).
277
278
279
280
281
282
            pts (torch.Tensor): Points of a single sample.
            img_meta (dict): Meta information of the single sample.

        Returns:
            torch.Tensor: Single level image features of each point.
        """
283
        # TODO: image transformation also extracted
zhangwenwei's avatar
zhangwenwei committed
284
        img_scale_factor = (
zhangwenwei's avatar
zhangwenwei committed
285
            pts.new_tensor(img_meta['scale_factor'][:2])
zhangwenwei's avatar
zhangwenwei committed
286
287
288
289
290
291
            if 'scale_factor' in img_meta.keys() else 1)
        img_flip = img_meta['flip'] if 'flip' in img_meta.keys() else False
        img_crop_offset = (
            pts.new_tensor(img_meta['img_crop_offset'])
            if 'img_crop_offset' in img_meta.keys() else 0)
        img_pts = point_sample(
292
            img_meta,
zhangwenwei's avatar
zhangwenwei committed
293
294
295
296
297
298
            img_feats,
            pts,
            pts.new_tensor(img_meta['lidar2img']),
            img_scale_factor,
            img_crop_offset,
            img_flip=img_flip,
299
            img_pad_shape=img_meta['input_shape'][:2],
zhangwenwei's avatar
zhangwenwei committed
300
301
302
303
304
305
            img_shape=img_meta['img_shape'][:2],
            aligned=self.aligned,
            padding_mode=self.padding_mode,
            align_corners=self.align_corners,
        )
        return img_pts