parta2_rpn_head.py 13.5 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
from __future__ import division

import numpy as np
import torch
5
from mmcv.runner import force_fp32
wuyuefeng's avatar
wuyuefeng committed
6

zhangwenwei's avatar
zhangwenwei committed
7
from mmdet3d.core import limit_period, xywhr2xyxyr
wuyuefeng's avatar
wuyuefeng committed
8
9
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
10
from .anchor3d_head import Anchor3DHead
wuyuefeng's avatar
wuyuefeng committed
11
12


13
@HEADS.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
class PartA2RPNHead(Anchor3DHead):
zhangwenwei's avatar
zhangwenwei committed
15
    """RPN head for PartA2.
zhangwenwei's avatar
zhangwenwei committed
16
17
18
19
20
21
22
23
24
25
26

    Note:
        The main difference between the PartA2 RPN head and the Anchor3DHead
        lies in their output during inference. PartA2 RPN head further returns
        the original classification score for the second stage since the bbox
        head in RoI head does not do classification task.

        Different from RPN heads in 2D detectors, this RPN head does
        multi-class classification task and uses FocalLoss like the SECOND and
        PointPillars do. But this head uses class agnostic nms rather than
        multi-class nms.
wuyuefeng's avatar
wuyuefeng committed
27
28

    Args:
zhangwenwei's avatar
zhangwenwei committed
29
        num_classes (int): Number of classes.
wuyuefeng's avatar
wuyuefeng committed
30
        in_channels (int): Number of channels in the input feature map.
wangtai's avatar
wangtai committed
31
32
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
wuyuefeng's avatar
wuyuefeng committed
33
34
35
36
37
38
39
40
41
42
        feat_channels (int): Number of channels of the feature map.
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
        dir_offset (float | int): The offset of BEV rotation angles
            (TODO: may be moved into box coder)
wuyuefeng's avatar
wuyuefeng committed
43
44
45
        dir_limit_offset (float | int): The limited range of BEV
            rotation angles. (TODO: may be moved into box coder)
        bbox_coder (dict): Config dict of box coders.
wuyuefeng's avatar
wuyuefeng committed
46
47
48
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
49
    """
wuyuefeng's avatar
wuyuefeng committed
50
51

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
52
                 num_classes,
wuyuefeng's avatar
wuyuefeng committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
78
79
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2),
                 init_cfg=None):
zhangwenwei's avatar
zhangwenwei committed
80
        super().__init__(num_classes, in_channels, train_cfg, test_cfg,
wuyuefeng's avatar
wuyuefeng committed
81
                         feat_channels, use_direction_classifier,
zhangwenwei's avatar
zhangwenwei committed
82
83
                         anchor_generator, assigner_per_size, assign_per_class,
                         diff_rad_by_sin, dir_offset, dir_limit_offset,
84
                         bbox_coder, loss_cls, loss_bbox, loss_dir, init_cfg)
wuyuefeng's avatar
wuyuefeng committed
85

86
    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds'))
zhangwenwei's avatar
zhangwenwei committed
87
88
89
90
91
92
93
94
    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
95
96
97
98
99
100
101
        """Calculate losses.

        Args:
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
                class predictions.
wangtai's avatar
wangtai committed
102
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth boxes \
103
                of each sample.
wangtai's avatar
wangtai committed
104
105
            gt_labels (list[torch.Tensor]): Labels of each sample.
            input_metas (list[dict]): Point cloud and image's meta info.
106
107
108
109
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
110
111
            dict[str, list[torch.Tensor]]: Classification, bbox, and \
                direction losses of each level.
112
113
114

                - loss_rpn_cls (list[torch.Tensor]): Classification losses.
                - loss_rpn_bbox (list[torch.Tensor]): Box regression losses.
zhangwenwei's avatar
zhangwenwei committed
115
                - loss_rpn_dir (list[torch.Tensor]): Direction classification \
116
117
                    losses.
        """
zhangwenwei's avatar
zhangwenwei committed
118
119
120
121
122
123
124
125
126
        loss_dict = super().loss(cls_scores, bbox_preds, dir_cls_preds,
                                 gt_bboxes, gt_labels, input_metas,
                                 gt_bboxes_ignore)
        # change the loss key names to avoid conflict
        return dict(
            loss_rpn_cls=loss_dict['loss_cls'],
            loss_rpn_bbox=loss_dict['loss_bbox'],
            loss_rpn_dir=loss_dict['loss_dir'])

wuyuefeng's avatar
wuyuefeng committed
127
128
129
130
131
132
133
134
    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
                          cfg,
                          rescale=False):
wuyuefeng's avatar
wuyuefeng committed
135
136
137
        """Get bboxes of single branch.

        Args:
liyinhao's avatar
liyinhao committed
138
139
140
141
142
            cls_scores (torch.Tensor): Class score in single batch.
            bbox_preds (torch.Tensor): Bbox prediction in single batch.
            dir_cls_preds (torch.Tensor): Predictions of direction class
                in single batch.
            mlvl_anchors (List[torch.Tensor]): Multi-level anchors
wuyuefeng's avatar
wuyuefeng committed
143
144
                in single batch.
            input_meta (list[dict]): Contain pcd and img's meta info.
145
            cfg (None | :obj:`ConfigDict`): Training or testing config.
liyinhao's avatar
liyinhao committed
146
            rescale (list[torch.Tensor]): whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
147
148

        Returns:
zhangwenwei's avatar
zhangwenwei committed
149
            dict: Predictions of single batch containing the following keys:
150

zhangwenwei's avatar
zhangwenwei committed
151
                - boxes_3d (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes.
liyinhao's avatar
liyinhao committed
152
153
154
                - scores_3d (torch.Tensor): Score of each bbox.
                - labels_3d (torch.Tensor): Label of each bbox.
                - cls_preds (torch.Tensor): Class score of each bbox.
wuyuefeng's avatar
wuyuefeng committed
155
        """
wuyuefeng's avatar
wuyuefeng committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_max_scores = []
        mlvl_label_pred = []
        mlvl_dir_scores = []
        mlvl_cls_score = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)

            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

            nms_pre = cfg.get('nms_pre', -1)
            if self.use_sigmoid_cls:
                max_scores, pred_labels = scores.max(dim=1)
            else:
                max_scores, pred_labels = scores[:, :-1].max(dim=1)
            # get topk
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                topk_scores, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                max_scores = topk_scores
zhangwenwei's avatar
zhangwenwei committed
190
                cls_score = scores[topk_inds, :]
wuyuefeng's avatar
wuyuefeng committed
191
192
193
194
195
196
197
198
199
200
201
                dir_cls_score = dir_cls_score[topk_inds]
                pred_labels = pred_labels[topk_inds]

            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
            mlvl_bboxes.append(bboxes)
            mlvl_max_scores.append(max_scores)
            mlvl_cls_score.append(cls_score)
            mlvl_label_pred.append(pred_labels)
            mlvl_dir_scores.append(dir_cls_score)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
202
203
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.box_code_size).bev)
wuyuefeng's avatar
wuyuefeng committed
204
205
206
        mlvl_max_scores = torch.cat(mlvl_max_scores)
        mlvl_label_pred = torch.cat(mlvl_label_pred)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)
zhangwenwei's avatar
zhangwenwei committed
207
208
209
210
211
212
        # shape [k, num_class] before sigmoid
        # PartA2 need to keep raw classification score
        # becase the bbox head in the second stage does not have
        # classification branch,
        # roi head need this score as classification score
        mlvl_cls_score = torch.cat(mlvl_cls_score)
wuyuefeng's avatar
wuyuefeng committed
213
214
215
216
217

        score_thr = cfg.get('score_thr', 0)
        result = self.class_agnostic_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                         mlvl_max_scores, mlvl_label_pred,
                                         mlvl_cls_score, mlvl_dir_scores,
218
219
                                         score_thr, cfg.nms_post, cfg,
                                         input_meta)
wuyuefeng's avatar
wuyuefeng committed
220
221
222
223
224

        return result

    def class_agnostic_nms(self, mlvl_bboxes, mlvl_bboxes_for_nms,
                           mlvl_max_scores, mlvl_label_pred, mlvl_cls_score,
225
226
                           mlvl_dir_scores, score_thr, max_num, cfg,
                           input_meta):
wuyuefeng's avatar
wuyuefeng committed
227
228
229
        """Class agnostic nms for single batch.

        Args:
liyinhao's avatar
liyinhao committed
230
231
232
233
234
235
236
237
238
239
            mlvl_bboxes (torch.Tensor): Bboxes from Multi-level.
            mlvl_bboxes_for_nms (torch.Tensor): Bboxes for nms
                (bev or minmax boxes) from Multi-level.
            mlvl_max_scores (torch.Tensor): Max scores of Multi-level bbox.
            mlvl_label_pred (torch.Tensor): Class predictions
                of Multi-level bbox.
            mlvl_cls_score (torch.Tensor): Class scores of
                Multi-level bbox.
            mlvl_dir_scores (torch.Tensor): Direction scores of
                Multi-level bbox.
wuyuefeng's avatar
wuyuefeng committed
240
241
            score_thr (int): Score threshold.
            max_num (int): Max number of bboxes after nms.
242
            cfg (None | :obj:`ConfigDict`): Training or testing config.
wuyuefeng's avatar
wuyuefeng committed
243
244
245
246
            input_meta (dict): Contain pcd and img's meta info.

        Returns:
            dict: Predictions of single batch. Contain the keys:
247

zhangwenwei's avatar
zhangwenwei committed
248
                - boxes_3d (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes.
liyinhao's avatar
liyinhao committed
249
250
251
                - scores_3d (torch.Tensor): Score of each bbox.
                - labels_3d (torch.Tensor): Label of each bbox.
                - cls_preds (torch.Tensor): Class score of each bbox.
wuyuefeng's avatar
wuyuefeng committed
252
        """
wuyuefeng's avatar
wuyuefeng committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        bboxes = []
        scores = []
        labels = []
        dir_scores = []
        cls_scores = []
        score_thr_inds = mlvl_max_scores > score_thr
        _scores = mlvl_max_scores[score_thr_inds]
        _bboxes_for_nms = mlvl_bboxes_for_nms[score_thr_inds, :]
        if cfg.use_rotate_nms:
            nms_func = nms_gpu
        else:
            nms_func = nms_normal_gpu
        selected = nms_func(_bboxes_for_nms, _scores, cfg.nms_thr)

        _mlvl_bboxes = mlvl_bboxes[score_thr_inds, :]
        _mlvl_dir_scores = mlvl_dir_scores[score_thr_inds]
        _mlvl_label_pred = mlvl_label_pred[score_thr_inds]
        _mlvl_cls_score = mlvl_cls_score[score_thr_inds]

        if len(selected) > 0:
            bboxes.append(_mlvl_bboxes[selected])
            scores.append(_scores[selected])
            labels.append(_mlvl_label_pred[selected])
            cls_scores.append(_mlvl_cls_score[selected])
            dir_scores.append(_mlvl_dir_scores[selected])
zhangwenwei's avatar
zhangwenwei committed
278
279
            dir_rot = limit_period(bboxes[-1][..., 6] - self.dir_offset,
                                   self.dir_limit_offset, np.pi)
wuyuefeng's avatar
wuyuefeng committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            bboxes[-1][..., 6] = (
                dir_rot + self.dir_offset +
                np.pi * dir_scores[-1].to(bboxes[-1].dtype))

        if bboxes:
            bboxes = torch.cat(bboxes, dim=0)
            scores = torch.cat(scores, dim=0)
            cls_scores = torch.cat(cls_scores, dim=0)
            labels = torch.cat(labels, dim=0)
            dir_scores = torch.cat(dir_scores, dim=0)
            if bboxes.shape[0] > max_num:
                _, inds = scores.sort(descending=True)
                inds = inds[:max_num]
                bboxes = bboxes[inds, :]
                labels = labels[inds]
                scores = scores[inds]
                cls_scores = cls_scores[inds]
297
298
            bboxes = input_meta['box_type_3d'](
                bboxes, box_dim=self.box_code_size)
wuyuefeng's avatar
wuyuefeng committed
299
            return dict(
zhangwenwei's avatar
zhangwenwei committed
300
301
302
                boxes_3d=bboxes,
                scores_3d=scores,
                labels_3d=labels,
wuyuefeng's avatar
wuyuefeng committed
303
                cls_preds=cls_scores  # raw scores [max_num, cls_num]
wuyuefeng's avatar
wuyuefeng committed
304
305
306
            )
        else:
            return dict(
307
308
309
                boxes_3d=input_meta['box_type_3d'](
                    mlvl_bboxes.new_zeros([0, self.box_code_size]),
                    box_dim=self.box_code_size),
zhangwenwei's avatar
zhangwenwei committed
310
311
                scores_3d=mlvl_bboxes.new_zeros([0]),
                labels_3d=mlvl_bboxes.new_zeros([0]),
wuyuefeng's avatar
wuyuefeng committed
312
                cls_preds=mlvl_bboxes.new_zeros([0, mlvl_cls_score.shape[-1]]))