pointnet2_sa_ssg.py 5.38 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
import torch
2
from mmcv.runner import auto_fp16
zhangwenwei's avatar
zhangwenwei committed
3
from torch import nn as nn
wuyuefeng's avatar
wuyuefeng committed
4

5
from mmdet3d.ops import PointFPModule, build_sa_module
wuyuefeng's avatar
wuyuefeng committed
6
from mmdet.models import BACKBONES
7
from .base_pointnet import BasePointNet
wuyuefeng's avatar
wuyuefeng committed
8
9
10


@BACKBONES.register_module()
11
class PointNet2SASSG(BasePointNet):
wuyuefeng's avatar
wuyuefeng committed
12
    """PointNet2 with Single-scale grouping.
wuyuefeng's avatar
wuyuefeng committed
13
14

    Args:
wangtai's avatar
wangtai committed
15
16
        in_channels (int): Input channels of point cloud.
        num_points (tuple[int]): The number of points which each SA
wuyuefeng's avatar
wuyuefeng committed
17
            module samples.
wangtai's avatar
wangtai committed
18
19
        radius (tuple[float]): Sampling radii of each SA module.
        num_samples (tuple[int]): The number of samples for ball
wuyuefeng's avatar
wuyuefeng committed
20
            query in each SA module.
wangtai's avatar
wangtai committed
21
22
23
        sa_channels (tuple[tuple[int]]): Out channels of each mlp in SA module.
        fp_channels (tuple[tuple[int]]): Out channels of each mlp in FP module.
        norm_cfg (dict): Config of normalization layer.
24
25
26
27
28
29
30
        sa_cfg (dict): Config of set abstraction module, which may contain
            the following keys and values:

            - pool_mod (str): Pool method ('max' or 'avg') for SA modules.
            - use_xyz (bool): Whether to use xyz as a part of features.
            - normalize_xyz (bool): Whether to normalize xyz with radii in
              each SA module.
wuyuefeng's avatar
wuyuefeng committed
31
32
33
34
35
36
37
38
39
40
41
    """

    def __init__(self,
                 in_channels,
                 num_points=(2048, 1024, 512, 256),
                 radius=(0.2, 0.4, 0.8, 1.2),
                 num_samples=(64, 32, 16, 16),
                 sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                              (128, 128, 256)),
                 fp_channels=((256, 256), (256, 256)),
                 norm_cfg=dict(type='BN2d'),
42
43
44
45
                 sa_cfg=dict(
                     type='PointSAModule',
                     pool_mod='max',
                     use_xyz=True,
46
47
48
                     normalize_xyz=True),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
wuyuefeng's avatar
wuyuefeng committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.num_sa = len(sa_channels)
        self.num_fp = len(fp_channels)

        assert len(num_points) == len(radius) == len(num_samples) == len(
            sa_channels)
        assert len(sa_channels) >= len(fp_channels)

        self.SA_modules = nn.ModuleList()
        sa_in_channel = in_channels - 3  # number of channels without xyz
        skip_channel_list = [sa_in_channel]

        for sa_index in range(self.num_sa):
            cur_sa_mlps = list(sa_channels[sa_index])
            cur_sa_mlps = [sa_in_channel] + cur_sa_mlps
            sa_out_channel = cur_sa_mlps[-1]

            self.SA_modules.append(
66
                build_sa_module(
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70
71
                    num_point=num_points[sa_index],
                    radius=radius[sa_index],
                    num_sample=num_samples[sa_index],
                    mlp_channels=cur_sa_mlps,
                    norm_cfg=norm_cfg,
72
                    cfg=sa_cfg))
wuyuefeng's avatar
wuyuefeng committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            skip_channel_list.append(sa_out_channel)
            sa_in_channel = sa_out_channel

        self.FP_modules = nn.ModuleList()

        fp_source_channel = skip_channel_list.pop()
        fp_target_channel = skip_channel_list.pop()
        for fp_index in range(len(fp_channels)):
            cur_fp_mlps = list(fp_channels[fp_index])
            cur_fp_mlps = [fp_source_channel + fp_target_channel] + cur_fp_mlps
            self.FP_modules.append(PointFPModule(mlp_channels=cur_fp_mlps))
            if fp_index != len(fp_channels) - 1:
                fp_source_channel = cur_fp_mlps[-1]
                fp_target_channel = skip_channel_list.pop()

88
    @auto_fp16(apply_to=('points', ))
wuyuefeng's avatar
wuyuefeng committed
89
90
91
92
    def forward(self, points):
        """Forward pass.

        Args:
93
            points (torch.Tensor): point coordinates with features,
wuyuefeng's avatar
wuyuefeng committed
94
95
96
                with shape (B, N, 3 + input_feature_dim).

        Returns:
wangtai's avatar
wangtai committed
97
            dict[str, list[torch.Tensor]]: Outputs after SA and FP modules.
98

wangtai's avatar
wangtai committed
99
                - fp_xyz (list[torch.Tensor]): The coordinates of \
wuyuefeng's avatar
wuyuefeng committed
100
                    each fp features.
wangtai's avatar
wangtai committed
101
                - fp_features (list[torch.Tensor]): The features \
wuyuefeng's avatar
wuyuefeng committed
102
                    from each Feature Propagate Layers.
wangtai's avatar
wangtai committed
103
                - fp_indices (list[torch.Tensor]): Indices of the \
wuyuefeng's avatar
wuyuefeng committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                    input points.
        """
        xyz, features = self._split_point_feats(points)

        batch, num_points = xyz.shape[:2]
        indices = xyz.new_tensor(range(num_points)).unsqueeze(0).repeat(
            batch, 1).long()

        sa_xyz = [xyz]
        sa_features = [features]
        sa_indices = [indices]

        for i in range(self.num_sa):
            cur_xyz, cur_features, cur_indices = self.SA_modules[i](
                sa_xyz[i], sa_features[i])
            sa_xyz.append(cur_xyz)
            sa_features.append(cur_features)
            sa_indices.append(
                torch.gather(sa_indices[-1], 1, cur_indices.long()))

        fp_xyz = [sa_xyz[-1]]
        fp_features = [sa_features[-1]]
        fp_indices = [sa_indices[-1]]

        for i in range(self.num_fp):
            fp_features.append(self.FP_modules[i](
                sa_xyz[self.num_sa - i - 1], sa_xyz[self.num_sa - i],
                sa_features[self.num_sa - i - 1], fp_features[-1]))
            fp_xyz.append(sa_xyz[self.num_sa - i - 1])
            fp_indices.append(sa_indices[self.num_sa - i - 1])

        ret = dict(
136
137
138
139
140
141
            fp_xyz=fp_xyz,
            fp_features=fp_features,
            fp_indices=fp_indices,
            sa_xyz=sa_xyz,
            sa_features=sa_features,
            sa_indices=sa_indices)
wuyuefeng's avatar
wuyuefeng committed
142
        return ret