multi_backbone.py 4.55 KB
Newer Older
encore-zhou's avatar
encore-zhou committed
1
2
import copy
import torch
3
import warnings
encore-zhou's avatar
encore-zhou committed
4
from mmcv.cnn import ConvModule
5
from mmcv.runner import BaseModule, auto_fp16
encore-zhou's avatar
encore-zhou committed
6
7
8
9
10
11
from torch import nn as nn

from mmdet.models import BACKBONES, build_backbone


@BACKBONES.register_module()
12
class MultiBackbone(BaseModule):
encore-zhou's avatar
encore-zhou committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    """MultiBackbone with different configs.

    Args:
        num_streams (int): The number of backbones.
        backbones (list or dict): A list of backbone configs.
        aggregation_mlp_channels (list[int]): Specify the mlp layers
            for feature aggregation.
        conv_cfg (dict): Config dict of convolutional layers.
        norm_cfg (dict): Config dict of normalization layers.
        act_cfg (dict): Config dict of activation layers.
        suffixes (list): A list of suffixes to rename the return dict
            for each backbone.
    """

    def __init__(self,
                 num_streams,
                 backbones,
                 aggregation_mlp_channels=None,
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d', eps=1e-5, momentum=0.01),
                 act_cfg=dict(type='ReLU'),
                 suffixes=('net0', 'net1'),
35
36
                 init_cfg=None,
                 pretrained=None,
encore-zhou's avatar
encore-zhou committed
37
                 **kwargs):
38
        super().__init__(init_cfg=init_cfg)
encore-zhou's avatar
encore-zhou committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        assert isinstance(backbones, dict) or isinstance(backbones, list)
        if isinstance(backbones, dict):
            backbones_list = []
            for ind in range(num_streams):
                backbones_list.append(copy.deepcopy(backbones))
            backbones = backbones_list

        assert len(backbones) == num_streams
        assert len(suffixes) == num_streams

        self.backbone_list = nn.ModuleList()
        # Rename the ret_dict with different suffixs.
        self.suffixes = suffixes

        out_channels = 0

        for backbone_cfg in backbones:
            out_channels += backbone_cfg['fp_channels'][-1][-1]
            self.backbone_list.append(build_backbone(backbone_cfg))

        # Feature aggregation layers
        if aggregation_mlp_channels is None:
            aggregation_mlp_channels = [
                out_channels, out_channels // 2,
                out_channels // len(self.backbone_list)
            ]
        else:
            aggregation_mlp_channels.insert(0, out_channels)

        self.aggregation_layers = nn.Sequential()
        for i in range(len(aggregation_mlp_channels) - 1):
            self.aggregation_layers.add_module(
                f'layer{i}',
                ConvModule(
                    aggregation_mlp_channels[i],
                    aggregation_mlp_channels[i + 1],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
80
                    bias=True,
encore-zhou's avatar
encore-zhou committed
81
82
                    inplace=True))

83
84
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be setting at the same time'
encore-zhou's avatar
encore-zhou committed
85
        if isinstance(pretrained, str):
86
87
88
            warnings.warn('DeprecationWarning: pretrained is a deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
encore-zhou's avatar
encore-zhou committed
89

90
    @auto_fp16()
encore-zhou's avatar
encore-zhou committed
91
92
93
94
95
96
97
98
99
100
101
    def forward(self, points):
        """Forward pass.

        Args:
            points (torch.Tensor): point coordinates with features,
                with shape (B, N, 3 + input_feature_dim).

        Returns:
            dict[str, list[torch.Tensor]]: Outputs from multiple backbones.

                - fp_xyz[suffix] (list[torch.Tensor]): The coordinates of
zhangwenwei's avatar
zhangwenwei committed
102
                  each fp features.
encore-zhou's avatar
encore-zhou committed
103
                - fp_features[suffix] (list[torch.Tensor]): The features
zhangwenwei's avatar
zhangwenwei committed
104
                  from each Feature Propagate Layers.
encore-zhou's avatar
encore-zhou committed
105
                - fp_indices[suffix] (list[torch.Tensor]): Indices of the
zhangwenwei's avatar
zhangwenwei committed
106
                  input points.
encore-zhou's avatar
encore-zhou committed
107
                - hd_feature (torch.Tensor): The aggregation feature
zhangwenwei's avatar
zhangwenwei committed
108
                  from multiple backbones.
encore-zhou's avatar
encore-zhou committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        """
        ret = {}
        fp_features = []
        for ind in range(len(self.backbone_list)):
            cur_ret = self.backbone_list[ind](points)
            cur_suffix = self.suffixes[ind]
            fp_features.append(cur_ret['fp_features'][-1])
            if cur_suffix != '':
                for k in cur_ret.keys():
                    cur_ret[k + '_' + cur_suffix] = cur_ret.pop(k)
            ret.update(cur_ret)

        # Combine the features here
        hd_feature = torch.cat(fp_features, dim=1)
        hd_feature = self.aggregation_layers(hd_feature)
        ret['hd_feature'] = hd_feature
        return ret