builder.py 1.6 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import platform
from mmcv.utils import build_from_cfg

from mmdet.datasets import DATASETS
from mmdet.datasets.builder import _concat_dataset

if platform.system() != 'Windows':
    # https://github.com/pytorch/pytorch/issues/973
    import resource
    rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
    hard_limit = rlimit[1]
    soft_limit = min(4096, hard_limit)
    resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))


def build_dataset(cfg, default_args=None):
    from mmdet3d.datasets.dataset_wrappers import CBGSDataset
    from mmdet.datasets.dataset_wrappers import (ClassBalancedDataset,
                                                 ConcatDataset, RepeatDataset)
    if isinstance(cfg, (list, tuple)):
        dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
    elif cfg['type'] == 'ConcatDataset':
        dataset = ConcatDataset(
            [build_dataset(c, default_args) for c in cfg['datasets']],
            cfg.get('separate_eval', True))
    elif cfg['type'] == 'RepeatDataset':
        dataset = RepeatDataset(
            build_dataset(cfg['dataset'], default_args), cfg['times'])
    elif cfg['type'] == 'ClassBalancedDataset':
        dataset = ClassBalancedDataset(
            build_dataset(cfg['dataset'], default_args), cfg['oversample_thr'])
    elif cfg['type'] == 'CBGSDataset':
        dataset = CBGSDataset(build_dataset(cfg['dataset'], default_args))
    elif isinstance(cfg.get('ann_file'), (list, tuple)):
        dataset = _concat_dataset(cfg, default_args)
    else:
        dataset = build_from_cfg(cfg, DATASETS, default_args)

    return dataset