Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMCV
Commits
c310d28c
"vscode:/vscode.git/clone" did not exist on "cb4c3c8c66405caca780ccf3d4af3d8cc581f9fd"
Unverified
Commit
c310d28c
authored
Jan 13, 2023
by
mengpenghui
Committed by
GitHub
Jan 13, 2023
Browse files
[Feature] Add MLU support for DCN (#2540)
parent
c9d477bb
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
98 additions
and
17 deletions
+98
-17
docs/en/understand_mmcv/ops.md
docs/en/understand_mmcv/ops.md
+1
-1
docs/zh_cn/understand_mmcv/ops.md
docs/zh_cn/understand_mmcv/ops.md
+1
-1
mmcv/ops/__init__.py
mmcv/ops/__init__.py
+2
-1
mmcv/ops/deform_conv.py
mmcv/ops/deform_conv.py
+65
-1
tests/test_ops/test_deform_conv.py
tests/test_ops/test_deform_conv.py
+29
-13
No files found.
docs/en/understand_mmcv/ops.md
View file @
c310d28c
...
@@ -18,7 +18,7 @@ We implement common ops used in detection, segmentation, etc.
...
@@ -18,7 +18,7 @@ We implement common ops used in detection, segmentation, etc.
| ConvexIoU | | √ | | | |
| ConvexIoU | | √ | | | |
| CornerPool | | √ | | | |
| CornerPool | | √ | | | |
| Correlation | | √ | | | |
| Correlation | | √ | | | |
| Deformable Convolution v1/v2 | √ | √ |
| | √ |
| Deformable Convolution v1/v2 | √ | √ |
√
| | √ |
| Deformable RoIPool | | √ | √ | | √ |
| Deformable RoIPool | | √ | √ | | √ |
| DiffIoURotated | | √ | | | |
| DiffIoURotated | | √ | | | |
| DynamicScatter | | √ | | | |
| DynamicScatter | | √ | | | |
...
...
docs/zh_cn/understand_mmcv/ops.md
View file @
c310d28c
...
@@ -18,7 +18,7 @@ MMCV 提供了检测、分割等任务中常用的算子
...
@@ -18,7 +18,7 @@ MMCV 提供了检测、分割等任务中常用的算子
| ConvexIoU | | √ | | | |
| ConvexIoU | | √ | | | |
| CornerPool | | √ | | | |
| CornerPool | | √ | | | |
| Correlation | | √ | | | |
| Correlation | | √ | | | |
| Deformable Convolution v1/v2 | √ | √ |
| | √ |
| Deformable Convolution v1/v2 | √ | √ |
√
| | √ |
| Deformable RoIPool | | √ | √ | | √ |
| Deformable RoIPool | | √ | √ | | √ |
| DiffIoURotated | | √ | | | |
| DiffIoURotated | | √ | | | |
| DynamicScatter | | √ | | | |
| DynamicScatter | | √ | | | |
...
...
mmcv/ops/__init__.py
View file @
c310d28c
...
@@ -109,6 +109,7 @@ __all__ = [
...
@@ -109,6 +109,7 @@ __all__ = [
]
]
if
IS_MLU_AVAILABLE
:
if
IS_MLU_AVAILABLE
:
from
.deform_conv
import
DeformConv2dPack_MLU
# noqa:F401
from
.modulated_deform_conv
import
\
from
.modulated_deform_conv
import
\
ModulatedDeformConv2dPack_MLU
# noqa:F401
ModulatedDeformConv2dPack_MLU
# noqa:F401
__all__
.
app
end
(
'ModulatedDeformConv2dPack_MLU'
)
__all__
.
ext
end
(
[
'ModulatedDeformConv2dPack_MLU'
,
'DeformConv2dPack_MLU'
]
)
mmcv/ops/deform_conv.py
View file @
c310d28c
...
@@ -9,7 +9,7 @@ from torch.autograd import Function
...
@@ -9,7 +9,7 @@ from torch.autograd import Function
from
torch.autograd.function
import
once_differentiable
from
torch.autograd.function
import
once_differentiable
from
torch.nn.modules.utils
import
_pair
,
_single
from
torch.nn.modules.utils
import
_pair
,
_single
from
mmcv.utils
import
deprecated_api_warning
from
mmcv.utils
import
IS_MLU_AVAILABLE
,
deprecated_api_warning
from
..cnn
import
CONV_LAYERS
from
..cnn
import
CONV_LAYERS
from
..utils
import
ext_loader
,
print_log
from
..utils
import
ext_loader
,
print_log
from
.modulated_deform_conv
import
ModulatedDeformConv2dFunction
from
.modulated_deform_conv
import
ModulatedDeformConv2dFunction
...
@@ -434,3 +434,67 @@ class DeformConv2dPack(DeformConv2d):
...
@@ -434,3 +434,67 @@ class DeformConv2dPack(DeformConv2d):
super
().
_load_from_state_dict
(
state_dict
,
prefix
,
local_metadata
,
super
().
_load_from_state_dict
(
state_dict
,
prefix
,
local_metadata
,
strict
,
missing_keys
,
unexpected_keys
,
strict
,
missing_keys
,
unexpected_keys
,
error_msgs
)
error_msgs
)
if
IS_MLU_AVAILABLE
:
import
torchvision
from
mmcv.utils
import
digit_version
assert
digit_version
(
torchvision
.
__version__
)
>=
digit_version
(
'0.10.0a0'
),
'the version of torchvision should be >= 0.10.0'
from
torchvision.ops
import
deform_conv2d
as
tv_deform_conv2d
@
CONV_LAYERS
.
register_module
(
'DCN'
,
force
=
True
)
class
DeformConv2dPack_MLU
(
DeformConv2d
):
"""This class is the DCN implementation of the MLU device. The MLU
backend support of the operator has been implemented in torchvision.
The mmcv registration mechanism is used for multiplexing here. The
torchvision implementation of DCN is called.
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int): Same as nn.Conv2d, while tuple is not supported.
padding (int): Same as nn.Conv2d, while tuple is not supported.
dilation (int): Same as nn.Conv2d, while tuple is not supported.
groups (int): Same as nn.Conv2d.
bias (bool or str): If specified as `auto`, it will be decided by
the norm_cfg. Bias will be set as True if norm_cfg is None,
otherwise False.
im2col_step (int): Number of samples processed by
im2col_cuda_kernel per call. It will work when ``batch_size``
> ``im2col_step``, but ``batch_size`` must be divisible by
``im2col_step``. Default: 32. `New in version 1.7.2.
Currently not supported on MLU devices.`
"""
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
().
__init__
(
*
args
,
**
kwargs
)
self
.
conv_offset
=
nn
.
Conv2d
(
self
.
in_channels
,
self
.
deform_groups
*
2
*
self
.
kernel_size
[
0
]
*
self
.
kernel_size
[
1
],
kernel_size
=
self
.
kernel_size
,
stride
=
_pair
(
self
.
stride
),
padding
=
_pair
(
self
.
padding
),
dilation
=
_pair
(
self
.
dilation
),
bias
=
True
)
self
.
init_offset
()
def
init_offset
(
self
):
self
.
conv_offset
.
weight
.
data
.
zero_
()
self
.
conv_offset
.
bias
.
data
.
zero_
()
def
forward
(
self
,
x
:
Tensor
)
->
Tensor
:
# type: ignore
cur_im2col_step
=
min
(
self
.
im2col_step
,
x
.
size
(
0
))
assert
(
x
.
size
(
0
)
%
cur_im2col_step
)
==
0
,
'batch size must be divisible by im2col_step'
offset
=
self
.
conv_offset
(
x
)
x
=
x
.
type_as
(
offset
)
weight
=
self
.
weight
weight
=
weight
.
type_as
(
x
)
return
tv_deform_conv2d
(
x
,
offset
,
weight
,
None
,
self
.
stride
,
self
.
padding
,
self
.
dilation
)
tests/test_ops/test_deform_conv.py
View file @
c310d28c
...
@@ -3,7 +3,7 @@ import numpy as np
...
@@ -3,7 +3,7 @@ import numpy as np
import
pytest
import
pytest
import
torch
import
torch
from
mmcv.utils
import
TORCH_VERSION
,
digit_version
from
mmcv.utils
import
IS_MLU_AVAILABLE
,
TORCH_VERSION
,
digit_version
try
:
try
:
# If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
# If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast
...
@@ -45,7 +45,10 @@ class TestDeformconv:
...
@@ -45,7 +45,10 @@ class TestDeformconv:
im2col_step
=
2
):
im2col_step
=
2
):
if
not
torch
.
cuda
.
is_available
()
and
device
==
'cuda'
:
if
not
torch
.
cuda
.
is_available
()
and
device
==
'cuda'
:
pytest
.
skip
(
'test requires GPU'
)
pytest
.
skip
(
'test requires GPU'
)
from
mmcv.ops
import
DeformConv2dPack
if
device
==
'mlu'
:
from
mmcv.ops
import
DeformConv2dPack_MLU
as
DeformConv2dPack
else
:
from
mmcv.ops
import
DeformConv2dPack
c_in
=
1
c_in
=
1
c_out
=
1
c_out
=
1
batch_size
=
10
batch_size
=
10
...
@@ -69,6 +72,8 @@ class TestDeformconv:
...
@@ -69,6 +72,8 @@ class TestDeformconv:
torch
.
Tensor
(
deform_weight
).
reshape
(
1
,
1
,
2
,
2
))
torch
.
Tensor
(
deform_weight
).
reshape
(
1
,
1
,
2
,
2
))
if
device
==
'cuda'
:
if
device
==
'cuda'
:
model
.
cuda
()
model
.
cuda
()
elif
device
==
'mlu'
:
model
.
mlu
()
model
.
type
(
dtype
)
model
.
type
(
dtype
)
out
=
model
(
x
)
out
=
model
(
x
)
...
@@ -108,6 +113,7 @@ class TestDeformconv:
...
@@ -108,6 +113,7 @@ class TestDeformconv:
def
_test_amp_deformconv
(
self
,
def
_test_amp_deformconv
(
self
,
input_dtype
,
input_dtype
,
threshold
=
1e-3
,
threshold
=
1e-3
,
device
=
'cuda'
,
batch_size
=
10
,
batch_size
=
10
,
im2col_step
=
2
):
im2col_step
=
2
):
"""The function to test amp released on pytorch 1.6.0.
"""The function to test amp released on pytorch 1.6.0.
...
@@ -120,15 +126,18 @@ class TestDeformconv:
...
@@ -120,15 +126,18 @@ class TestDeformconv:
input_dtype: torch.float or torch.half.
input_dtype: torch.float or torch.half.
threshold: the same as above function.
threshold: the same as above function.
"""
"""
if
not
torch
.
cuda
.
is_available
():
if
not
torch
.
cuda
.
is_available
()
and
device
==
'cuda'
:
return
return
from
mmcv.ops
import
DeformConv2dPack
if
device
==
'mlu'
:
from
mmcv.ops
import
DeformConv2dPack_MLU
as
DeformConv2dPack
else
:
from
mmcv.ops
import
DeformConv2dPack
c_in
=
1
c_in
=
1
c_out
=
1
c_out
=
1
repeated_input
=
np
.
repeat
(
input
,
batch_size
,
axis
=
0
)
repeated_input
=
np
.
repeat
(
input
,
batch_size
,
axis
=
0
)
repeated_gt_out
=
np
.
repeat
(
gt_out
,
batch_size
,
axis
=
0
)
repeated_gt_out
=
np
.
repeat
(
gt_out
,
batch_size
,
axis
=
0
)
repeated_gt_x_grad
=
np
.
repeat
(
gt_x_grad
,
batch_size
,
axis
=
0
)
repeated_gt_x_grad
=
np
.
repeat
(
gt_x_grad
,
batch_size
,
axis
=
0
)
x
=
torch
.
Tensor
(
repeated_input
).
cuda
(
).
type
(
input_dtype
)
x
=
torch
.
Tensor
(
repeated_input
).
to
(
device
).
type
(
input_dtype
)
x
.
requires_grad
=
True
x
.
requires_grad
=
True
model
=
DeformConv2dPack
(
model
=
DeformConv2dPack
(
in_channels
=
c_in
,
in_channels
=
c_in
,
...
@@ -143,7 +152,10 @@ class TestDeformconv:
...
@@ -143,7 +152,10 @@ class TestDeformconv:
torch
.
Tensor
(
offset_bias
).
reshape
(
8
))
torch
.
Tensor
(
offset_bias
).
reshape
(
8
))
model
.
weight
.
data
=
torch
.
nn
.
Parameter
(
model
.
weight
.
data
=
torch
.
nn
.
Parameter
(
torch
.
Tensor
(
deform_weight
).
reshape
(
1
,
1
,
2
,
2
))
torch
.
Tensor
(
deform_weight
).
reshape
(
1
,
1
,
2
,
2
))
model
.
cuda
()
if
device
==
'cuda'
:
model
.
cuda
()
elif
device
==
'mlu'
:
model
.
mlu
()
out
=
model
(
x
)
out
=
model
(
x
)
out
.
backward
(
torch
.
ones_like
(
out
))
out
.
backward
(
torch
.
ones_like
(
out
))
...
@@ -180,21 +192,25 @@ class TestDeformconv:
...
@@ -180,21 +192,25 @@ class TestDeformconv:
def
test_deformconv
(
self
):
def
test_deformconv
(
self
):
self
.
_test_deformconv
(
torch
.
double
,
device
=
'cpu'
)
self
.
_test_deformconv
(
torch
.
double
,
device
=
'cpu'
)
self
.
_test_deformconv
(
torch
.
float
,
device
=
'cpu'
,
threshold
=
1e-1
)
self
.
_test_deformconv
(
torch
.
float
,
device
=
'cpu'
,
threshold
=
1e-1
)
self
.
_test_deformconv
(
torch
.
double
)
self
.
_test_deformconv
(
torch
.
float
)
device
=
'mlu'
if
IS_MLU_AVAILABLE
else
'cuda'
self
.
_test_deformconv
(
torch
.
half
,
threshold
=
1e-1
)
self
.
_test_deformconv
(
torch
.
double
,
device
=
device
)
self
.
_test_deformconv
(
torch
.
float
,
device
=
device
)
self
.
_test_deformconv
(
torch
.
half
,
threshold
=
1e-1
,
device
=
device
)
# test batch_size < im2col_step
# test batch_size < im2col_step
self
.
_test_deformconv
(
torch
.
float
,
batch_size
=
1
,
im2col_step
=
2
)
self
.
_test_deformconv
(
torch
.
float
,
batch_size
=
1
,
im2col_step
=
2
,
device
=
device
)
# test bach_size % im2col_step != 0
# test bach_size % im2col_step != 0
with
pytest
.
raises
(
with
pytest
.
raises
(
AssertionError
,
AssertionError
,
match
=
'batch size must be divisible by im2col_step'
):
match
=
'batch size must be divisible by im2col_step'
):
self
.
_test_deformconv
(
torch
.
float
,
batch_size
=
10
,
im2col_step
=
3
)
self
.
_test_deformconv
(
torch
.
float
,
batch_size
=
10
,
im2col_step
=
3
,
device
=
device
)
# test amp when torch version >= '1.6.0', the type of
# test amp when torch version >= '1.6.0', the type of
# input data for deformconv might be torch.float or torch.half
# input data for deformconv might be torch.float or torch.half
if
(
TORCH_VERSION
!=
'parrots'
if
(
TORCH_VERSION
!=
'parrots'
and
digit_version
(
TORCH_VERSION
)
>=
digit_version
(
'1.6.0'
)):
and
digit_version
(
TORCH_VERSION
)
>=
digit_version
(
'1.6.0'
)):
with
autocast
(
enabled
=
True
):
with
autocast
(
enabled
=
True
):
self
.
_test_amp_deformconv
(
torch
.
float
,
1e-1
)
self
.
_test_amp_deformconv
(
torch
.
float
,
1e-1
,
device
)
self
.
_test_amp_deformconv
(
torch
.
half
,
1e-1
)
self
.
_test_amp_deformconv
(
torch
.
half
,
1e-1
,
device
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment