Commit 86d9b043 authored by xiabo's avatar xiabo
Browse files

适配rocm

parent 10a14e6b
<div align="center"> # <div align="center"><strong>MMCV</strong></div>
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/main/docs/en/mmcv-logo.png" width="300"/> ## 简介
<div>&nbsp;</div> MMCV是计算机视觉研究的基础库,主要提供以下功能:图像处理、图像和标注结果可视化、图像转换、多种CNN网络结构、高质量实现的常见CUDA算子。MMCV官方github地址:[https://github.com/open-mmlab/mmcv](https://github.com/open-mmlab/mmcv)
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
[![platform](https://img.shields.io/badge/platform-Linux%7CWindows%7CmacOS-blue)](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) ## 安装
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/)
[![pytorch](https://img.shields.io/badge/pytorch-1.8~2.0-orange)](https://pytorch.org/get-started/previous-versions/)
[![cuda](https://img.shields.io/badge/cuda-10.1~11.8-green)](https://developer.nvidia.com/cuda-downloads)
[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv)
[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv)
[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
[📘Documentation](https://mmcv.readthedocs.io/en/latest/) | ### 使用pip方式安装
[🛠️Installation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) | mmcv whl包下载目录:[https://cancon.hpccube.com:65024/4/main/mmcv/dtk23.04](https://cancon.hpccube.com:65024/4/main/mmcv/dtk23.04),选择对应的pytorch版本和python版本下载对应mmcv的whl包
[🤔Reporting Issues](https://github.com/open-mmlab/mmcv/issues/new/choose) ```shell
pip install mmcv* (下载的mmcv的whl包)
</div> ```
### 使用源码编译方式安装
<div align="center">
English | [简体中文](README_zh-CN.md)
</div>
## Highlights
The OpenMMLab team released a new generation of training engine [MMEngine](https://github.com/open-mmlab/mmengine) at the World Artificial Intelligence Conference on September 1, 2022. It is a foundational library for training deep learning models. Compared with MMCV, it provides a universal and powerful runner, an open architecture with a more unified interface, and a more customizable training process.
MMCV v2.0.0 official version was released on April 6, 2023. In version 2.x, it removed components related to the training process and added a data transformation module. Also, starting from 2.x, it renamed the package names **mmcv** to **mmcv-lite** and **mmcv-full** to **mmcv**. For details, see [Compatibility Documentation](docs/en/compatibility.md).
MMCV will maintain both [1.x](https://github.com/open-mmlab/mmcv/tree/1.x) (corresponding to the original [master](https://github.com/open-mmlab/mmcv/tree/master) branch) and **2.x** (corresponding to the **main** branch, now the default branch) versions simultaneously. For details, see [Branch Maintenance Plan](README.md#branch-maintenance-plan).
## Introduction
MMCV is a foundational library for computer vision research and it provides the following functionalities:
- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html)
- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html)
- [Image transformation](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_transform.html)
- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html)
- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html)
It supports the following systems:
- Linux
- Windows
- macOS
See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
Note: MMCV requires Python 3.7+.
## Installation
There are two versions of MMCV:
- **mmcv**: comprehensive, with full features and various CUDA ops out of the box. It takes longer time to build.
- **mmcv-lite**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
### Install mmcv
Before installing mmcv, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation). For apple silicon users, please use PyTorch 1.13+. #### 编译环境准备
提供2种环境准备方式:
The command to install mmcv: 1. 基于光源pytorch基础镜像环境:镜像下载地址:[https://sourcefind.cn/#/image/dcu/pytorch](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本。
```bash 2. 基于现有python环境:安装pytorch,pytorch whl包下载目录:[https://cancon.hpccube.com:65024/4/main/pytorch/dtk23.04](https://cancon.hpccube.com:65024/4/main/pytorch/dtk23.04),根据python、dtk版本,下载对应pytorch的whl包。安装命令如下:
pip install -U openmim ```shell
mim install mmcv pip install torch* (下载的torch的whl包)
pip install setuptools==59.5.0 wheel
``` ```
If you need to specify the version of mmcv, you can use the following command: #### 源码编译安装
- 代码下载
```bash ```shell
mim install mmcv==2.0.0 git clone https://developer.hpccube.com/codes/aicomponent/mmcv # 根据编译需要切换分支
``` ```
- 提供2种源码编译方式(进入mmcv目录):
If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv version, in which case you can [build mmcv from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
<details>
<summary>Installation log using pre-built packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv<br />
<b>Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv-2.0.0-cp38-cp38-manylinux1_x86_64.whl</b>
</details>
<details>
<summary>Installation log using source packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv==2.0.0<br />
<b>Downloading mmcv-2.0.0.tar.gz</b>
</details>
For more installation methods, please refer to the [Installation documentation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html).
### Install mmcv-lite
If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
```bash
pip install -U openmim
mim install mmcv-lite
``` ```
1. 编译whl包并安装
MMCV_WITH_OPS=1 ROCM_HOME=${ROCM_PATH} python3 setup.py -v bdist_wheel
pip install dist/mmcv*
## FAQ 2. 源码编译安装
MMCV_WITH_OPS=1 ROCM_HOME=${ROCM_PATH} python3 setup.py install
If you face some installation issues, CUDA related issues or RuntimeErrors,
you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html).
If you face installation problems or runtime issues, you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html) to see if there is a solution. If the problem is still not solved, feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
## Citation
If you find this project useful in your research, please consider cite:
```latex
@misc{mmcv,
title={{MMCV: OpenMMLab} Computer Vision Foundation},
author={MMCV Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmcv}},
year={2018}
}
``` ```
## Contributing ## 版本号查询
- python -c "import mmcv; mmcv.\_\_version__",版本号与官方版本同步,查询该软件的版本号,例如2.0.0;
We appreciate all contributions to improve MMCV. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline.
## License
MMCV is released under the Apache 2.0 license, while some specific operations in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters.
## Branch Maintenance Plan
MMCV currently has four branches, namely main, 1.x, master, and 2.x, where 2.x is an alias for the main branch, and master is an alias for the 1.x branch. The 2.x and master branches will be deleted in the future. MMCV's branches go through the following three stages:
| Phase | Time | Branch | description | ## Known Issue
| -------------------- | --------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -
| RC Period | 2022.9.1 - 2023.4.5 | Release candidate code (2.x version) will be released on 2.x branch. Default master branch is still 1.x version | Master and 2.x branches iterate normally |
| Compatibility Period | 2023.4.6 - 2023.12.31 | **The 2.x branch has been renamed to the main branch and set as the default branch**, and 1.x branch will correspond to 1.x version | We still maintain the old version 1.x, respond to user needs, but try not to introduce changes that break compatibility; main branch iterates normally |
| Maintenance Period | From 2024/1/1 | Default main branch corresponds to 2.x version and 1.x branch is 1.x version | 1.x branch is in maintenance phase, no more new feature support; main branch is iterating normally |
## Projects in OpenMMLab ## Note
+ 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+ ROCM_PATH为dtk的路径,默认为/opt/dtk
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models. ## 其他参考
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [README_ORIGIN](README_ORIGIN.md)
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [README_zh-CN](README_zh-CN.md)
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
<div align="center">
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/mmcv-logo.png" width="300"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
</div>
[![docs](https://img.shields.io/badge/docs-2.x-blue)](https://mmcv.readthedocs.io/en/2.x/)
[![platform](https://img.shields.io/badge/platform-Linux%7CWindows%7CmacOS-blue)](https://mmcv.readthedocs.io/en/2.x/get_started/installation.html)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/)
[![pytorch](https://img.shields.io/badge/pytorch-1.6~1.13-orange)](https://pytorch.org/get-started/previous-versions/)
[![cuda](https://img.shields.io/badge/cuda-9.2~11.7-green)](https://developer.nvidia.com/cuda-downloads)
[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv)
[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv)
[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
English | [简体中文](README_zh-CN.md)
## Introduction
MMCV is a foundational library for computer vision research and it provides the following functionalities:
- [Image/Video processing](https://mmcv.readthedocs.io/en/2.x/understand_mmcv/data_process.html)
- [Image and annotation visualization](https://mmcv.readthedocs.io/en/2.x/understand_mmcv/visualization.html)
- [Image transformation](https://mmcv.readthedocs.io/en/2.x/understand_mmcv/data_transform.html)
- [Various CNN architectures](https://mmcv.readthedocs.io/en/2.x/understand_mmcv/cnn.html)
- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/2.x/understand_mmcv/ops.html)
It supports the following systems:
- Linux
- Windows
- macOS
See the [documentation](http://mmcv.readthedocs.io/en/2.x) for more features and usage.
Note: MMCV requires Python 3.7+.
## Installation
There are two versions of MMCV:
- **mmcv**: comprehensive, with full features and various CUDA ops out of the box. It takes longer time to build.
- **mmcv-lite**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
### Install mmcv
Before installing mmcv, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation). For apple silicon users, please use PyTorch 1.13+.
The command to install mmcv:
```bash
pip install -U openmim
mim install "mmcv>=2.0.0rc1"
```
If you need to specify the version of mmcv, you can use the following command:
```bash
mim install mmcv==2.0.0rc3
```
If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv version, in which case you can [build mmcv from source](https://mmcv.readthedocs.io/en/2.x/get_started/build.html).
<details>
<summary>Installation log using pre-built packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv<br />
<b>Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv-2.0.0rc3-cp38-cp38-manylinux1_x86_64.whl</b>
</details>
<details>
<summary>Installation log using source packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv==2.0.0rc3<br />
<b>Downloading mmcv-2.0.0rc3.tar.gz</b>
</details>
For more installation methods, please refer to the [Installation documentation](https://mmcv.readthedocs.io/en/2.x/get_started/installation.html).
### Install mmcv-lite
If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
```bash
pip install -U openmim
mim install "mmcv-lite>=2.0.0rc1"
```
## FAQ
If you face some installation issues, CUDA related issues or RuntimeErrors,
you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/2.x/faq.html).
If you face installation problems or runtime issues, you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/2.x/faq.html) to see if there is a solution. If the problem is still not solved, feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
## Citation
If you find this project useful in your research, please consider cite:
```latex
@misc{mmcv,
title={{MMCV: OpenMMLab} Computer Vision Foundation},
author={MMCV Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmcv}},
year={2018}
}
```
## Contributing
We appreciate all contributions to improve MMCV. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline.
## License
MMCV is released under the Apache 2.0 license, while some specific operations in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters.
## Projects in OpenMMLab
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
...@@ -146,7 +146,7 @@ class Testnms: ...@@ -146,7 +146,7 @@ class Testnms:
def test_batched_nms(self): def test_batched_nms(self):
from mmcv.ops import batched_nms from mmcv.ops import batched_nms
results = mmengine.load('./tests/data/batched_nms_data.pkl') results = mmengine.load('./data/batched_nms_data.pkl')
nms_max_num = 100 nms_max_num = 100
nms_cfg = dict( nms_cfg = dict(
......
...@@ -24,7 +24,7 @@ def test_voxelization(device_type): ...@@ -24,7 +24,7 @@ def test_voxelization(device_type):
point_cloud_range = [0, -40, -3, 70.4, 40, 1] point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load( voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item() './data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors'] expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels'] expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel'] expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
...@@ -69,7 +69,7 @@ def test_voxelization_nondeterministic(): ...@@ -69,7 +69,7 @@ def test_voxelization_nondeterministic():
point_cloud_range = [0, -40, -3, 70.4, 40, 1] point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load( voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item() './data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
points = voxel_dict['points'] points = voxel_dict['points']
points = torch.tensor(points) points = torch.tensor(points)
...@@ -158,7 +158,7 @@ def test_voxelization_mlu(device_type): ...@@ -158,7 +158,7 @@ def test_voxelization_mlu(device_type):
point_cloud_range = [0, -40, -3, 70.4, 40, 1] point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load( voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item() './data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors'] expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels'] expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel'] expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
...@@ -193,7 +193,7 @@ def test_voxelization_npu(device_type): ...@@ -193,7 +193,7 @@ def test_voxelization_npu(device_type):
point_cloud_range = [0, -40, -3, 70.4, 40, 1] point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load( voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item() './data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors'] expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels'] expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel'] expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment