Unverified Commit 741e52dd authored by tangyanf's avatar tangyanf Committed by GitHub
Browse files

[Feature]: add custom op roialign for onnxruntime (#724)



* add ort custom op roialign

* Update roi_align.py

* Update test_onnx.py

* Update test_onnx.py

* Update test_onnx.py

* Update test_onnx.py

* Update onnxruntime_register.cpp

* Update roiAlign.h

* Update roiAlign.cpp

* lint modification

* update roiAlign.cpp

* lint check

* lint check

* lint fix

* lint fix

* fix lint

* add link to commit
Co-authored-by: default avatarmaningsheng <maningsheng@sensetime.com>
parent 4f0f1f90
......@@ -15,9 +15,10 @@
## List of operators for ONNX Runtime supported in MMCV
| Operator | CPU | GPU | Note |
| :------: | :---: | :---: | :---: |
| SoftNMS | Y | N | None |
| Operator | CPU | GPU | Note |
| :------: | :---: | :---: | :-------------------------------------------------------------------------------------------------: |
| SoftNMS | Y | N | commit [94810f](https://github.com/open-mmlab/mmcv/commit/94810f2297871d0ea3ca650dcb2e842f5374d998) |
| RoiAlign | Y | N | None |
## How to build custom operators for ONNX Runtime
......
#include "onnxruntime_register.h"
#include "ort_mmcv_utils.h"
#include "roi_align.h"
#include "soft_nms.h"
const char *c_MMCVOpDomain = "mmcv";
SoftNmsOp c_SoftNmsOp;
MMCVRoiAlignCustomOp c_MMCVRoiAlignCustomOp;
OrtStatus *ORT_API_CALL RegisterCustomOps(OrtSessionOptions *options,
const OrtApiBase *api) {
......@@ -19,5 +21,10 @@ OrtStatus *ORT_API_CALL RegisterCustomOps(OrtSessionOptions *options,
return status;
}
if (auto status =
ortApi->CustomOpDomain_Add(domain, &c_MMCVRoiAlignCustomOp)) {
return status;
}
return ortApi->AddCustomOpDomain(options, domain);
}
#include "roi_align.h"
#include "../ort_mmcv_utils.h"
// implementation taken from Caffe2
struct PreCalc {
int pos1;
int pos2;
int pos3;
int pos4;
float w1;
float w2;
float w3;
float w4;
};
void pre_calc_for_bilinear_interpolate(
const int height, const int width, const int pooled_height,
const int pooled_width, const int iy_upper, const int ix_upper,
float roi_start_h, float roi_start_w, float bin_size_h, float bin_size_w,
int roi_bin_grid_h, int roi_bin_grid_w, std::vector<PreCalc> &pre_calc) {
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
for (int iy = 0; iy < iy_upper; iy++) {
const float yy =
roi_start_h + ph * bin_size_h +
static_cast<float>(iy + .5f) * bin_size_h /
static_cast<float>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < ix_upper; ix++) {
const float xx = roi_start_w + pw * bin_size_w +
static_cast<float>(ix + .5f) * bin_size_w /
static_cast<float>(roi_bin_grid_w);
float x = xx;
float y = yy;
// deal with: inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
PreCalc pc;
pc.pos1 = 0;
pc.pos2 = 0;
pc.pos3 = 0;
pc.pos4 = 0;
pc.w1 = 0;
pc.w2 = 0;
pc.w3 = 0;
pc.w4 = 0;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
continue;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (float)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (float)x_low;
} else {
x_high = x_low + 1;
}
float ly = y - y_low;
float lx = x - x_low;
float hy = 1. - ly, hx = 1. - lx;
float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
// save weights and indices
PreCalc pc;
pc.pos1 = y_low * width + x_low;
pc.pos2 = y_low * width + x_high;
pc.pos3 = y_high * width + x_low;
pc.pos4 = y_high * width + x_high;
pc.w1 = w1;
pc.w2 = w2;
pc.w3 = w3;
pc.w4 = w4;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
}
}
}
}
}
void ROIAlignForwardCPU(const int nthreads, const float *input,
const float *rois, float *output, float *argmax_y,
float *argmax_x, const int pooled_height,
const int pooled_width, const float spatial_scale,
const int sampling_ratio,
const int pool_mode, // 0 - max pool, 1 - avg pool
const bool aligned, const int channels,
const int height, const int width) {
int n_rois = nthreads / channels / pooled_width / pooled_height;
// (n, c, ph, pw) is an element in the pooled output
// can be parallelized using omp
// #pragma omp parallel for num_threads(32)
for (int n = 0; n < n_rois; n++) {
int index_n = n * channels * pooled_width * pooled_height;
const float *offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
// Do not use rounding; this implementation detail is critical
float offset = aligned ? (float)0.5 : (float)0.0;
float roi_start_w = offset_rois[1] * spatial_scale - offset;
float roi_start_h = offset_rois[2] * spatial_scale - offset;
float roi_end_w = offset_rois[3] * spatial_scale - offset;
float roi_end_h = offset_rois[4] * spatial_scale - offset;
float roi_width = roi_end_w - roi_start_w;
float roi_height = roi_end_h - roi_start_h;
if (aligned) {
/*AT_ASSERTM(roi_width >= 0 && roi_height >= 0,
"ROIs in ROIAlign cannot have non-negative size!");*/
assert(roi_width >= 0 && roi_height >= 0);
} else { // for backward-compatibility only
roi_width = std::max(roi_width, (float)1.);
roi_height = std::max(roi_height, (float)1.);
}
float bin_size_h =
static_cast<float>(roi_height) / static_cast<float>(pooled_height);
float bin_size_w =
static_cast<float>(roi_width) / static_cast<float>(pooled_width);
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// When the grid is empty, output zeros == 0/1, instead of NaN.
const float count =
std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
// we want to precalculate indices and weights shared by all channels,
// this is the key point of optimization
std::vector<PreCalc> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
pooled_width * pooled_height);
pre_calc_for_bilinear_interpolate(
height, width, pooled_height, pooled_width, roi_bin_grid_h,
roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
roi_bin_grid_h, roi_bin_grid_w, pre_calc);
for (int c = 0; c < channels; c++) {
int index_n_c = index_n + c * pooled_width * pooled_height;
const float *offset_input =
input + (roi_batch_ind * channels + c) * height * width;
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
int index = index_n_c + ph * pooled_width + pw;
float output_val = 0.;
float maxval = -10000;
float maxidx_y = -1.f, maxidx_x = -1.f;
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
const float y = roi_start_h + ph * bin_size_h +
static_cast<float>(iy + .5f) * bin_size_h /
static_cast<float>(roi_bin_grid_h);
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const float x = roi_start_w + pw * bin_size_w +
static_cast<float>(ix + .5f) * bin_size_w /
static_cast<float>(roi_bin_grid_w);
PreCalc pc = pre_calc[pre_calc_index];
float val = pc.w1 * offset_input[pc.pos1] +
pc.w2 * offset_input[pc.pos2] +
pc.w3 * offset_input[pc.pos3] +
pc.w4 * offset_input[pc.pos4];
if (val > maxval) {
maxval = val;
maxidx_y = y;
maxidx_x = x;
}
output_val += val;
pre_calc_index += 1;
}
}
if (pool_mode == 0) {
// We do max pooling inside a bin
output[index] = maxval;
argmax_y[index] = maxidx_y;
argmax_x[index] = maxidx_x;
} else if (pool_mode == 1) {
// We do average (integral) pooling inside a bin
output[index] = output_val / count;
} // if
} // for pw
} // for ph
} // for c
} // for n
}
void MMCVRoiAlignKernel::Compute(OrtKernelContext *context) {
// Setup inputs
const OrtValue *input_X = ort_.KernelContext_GetInput(context, 0);
const float *X_data =
reinterpret_cast<const float *>(ort_.GetTensorData<float>(input_X));
const OrtValue *input_rois = ort_.KernelContext_GetInput(context, 1);
const float *rois = reinterpret_cast<const float *>(
ort_.GetTensorData<const float *>(input_rois));
// Setup output
OrtTensorDimensions out_dimensions(ort_, input_X);
OrtTensorDimensions roi_dimensions(ort_, input_rois);
int batch_size = out_dimensions.data()[0];
int input_channels = out_dimensions.data()[1];
int input_height = out_dimensions.data()[2];
int input_width = out_dimensions.data()[3];
out_dimensions.data()[0] = roi_dimensions.data()[0];
out_dimensions.data()[2] = aligned_height_;
out_dimensions.data()[3] = aligned_width_;
OrtValue *output = ort_.KernelContext_GetOutput(
context, 0, out_dimensions.data(), out_dimensions.size());
float *out = ort_.GetTensorMutableData<float>(output);
OrtTensorTypeAndShapeInfo *output_info = ort_.GetTensorTypeAndShape(output);
ort_.ReleaseTensorTypeAndShapeInfo(output_info);
// TODO: forward here
int output_size = out_dimensions.data()[0];
for (auto i = 1; i < out_dimensions.size(); ++i) {
output_size *= out_dimensions.data()[i];
}
int poolMod = 1;
if (pool_mode_ == "max") poolMod = 0;
float *argmax_x = nullptr, *argmax_y = nullptr;
if (poolMod == 0) {
argmax_y = new float[output_size];
argmax_x = new float[output_size];
}
ROIAlignForwardCPU(output_size, X_data, rois, out, argmax_y, argmax_x,
aligned_height_, aligned_width_, spatial_scale_,
sampling_ratio_, poolMod, aligned_, input_channels,
input_height, input_width);
if (argmax_x) delete argmax_x;
if (argmax_y) delete argmax_y;
}
#ifndef ONNXRUNTIME_ROI_ALIGN_H
#define ONNXRUNTIME_ROI_ALIGN_H
#include <assert.h>
#include <onnxruntime_cxx_api.h>
#include <cmath>
#include <mutex>
#include <string>
#include <vector>
struct MMCVRoiAlignKernel {
public:
MMCVRoiAlignKernel(Ort::CustomOpApi ort, const OrtKernelInfo *info)
: ort_(ort) {
aligned_ = ort_.KernelInfoGetAttribute<int64_t>(info, "aligned");
aligned_height_ =
ort_.KernelInfoGetAttribute<int64_t>(info, "aligned_height");
aligned_width_ =
ort_.KernelInfoGetAttribute<int64_t>(info, "aligned_width");
pool_mode_ = ort_.KernelInfoGetAttribute<std::string>(info, "pool_mode");
sampling_ratio_ =
ort_.KernelInfoGetAttribute<int64_t>(info, "sampling_ratio");
spatial_scale_ = ort_.KernelInfoGetAttribute<float>(info, "spatial_scale");
}
void Compute(OrtKernelContext *context);
private:
Ort::CustomOpApi ort_;
int aligned_height_;
int aligned_width_;
float spatial_scale_;
int sampling_ratio_;
std::string pool_mode_;
int aligned_;
};
struct MMCVRoiAlignCustomOp
: Ort::CustomOpBase<MMCVRoiAlignCustomOp, MMCVRoiAlignKernel> {
void *CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo *info) {
return new MMCVRoiAlignKernel(api, info);
}
const char *GetName() const { return "MMCVRoiAlign"; }
size_t GetInputTypeCount() const { return 2; }
ONNXTensorElementDataType GetInputType(size_t) const {
return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
}
size_t GetOutputTypeCount() const { return 1; }
ONNXTensorElementDataType GetOutputType(size_t) const {
return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
}
// force cpu
const char *GetExecutionProviderType() const {
return "CPUExecutionProvider";
}
};
#endif // ONNXRUNTIME_ROI_ALIGN_H
......@@ -15,6 +15,27 @@ class RoIAlignFunction(Function):
@staticmethod
def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio,
pool_mode, aligned):
has_custom_op = False
try:
import os.path as osp
from mmcv.ops import get_onnxruntime_op_path
ort_op_path = get_onnxruntime_op_path()
has_custom_op = osp.exists(ort_op_path)
except ImportError:
pass
if has_custom_op:
return g.op(
'mmcv::MMCVRoiAlign',
input,
rois,
aligned_height_i=output_size[0],
aligned_width_i=output_size[1],
spatial_scale_f=spatial_scale,
sampling_ratio_i=max(0, sampling_ratio),
pool_mode_s=pool_mode,
aligned_i=aligned)
from torch.onnx.symbolic_opset9 import sub, squeeze
from torch.onnx.symbolic_helper import _slice_helper
from torch.onnx import TensorProtoDataType
......
......@@ -139,7 +139,12 @@ def test_softnms():
def test_roialign():
from mmcv.ops import roi_align
ort_custom_op_path = ''
try:
from mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
except ImportError:
pass
# roi align config
pool_h = 2
pool_w = 2
......@@ -178,7 +183,11 @@ def test_roialign():
keep_initializers_as_inputs=True,
input_names=['input', 'rois'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
session_options = rt.SessionOptions()
if os.path.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
# compute onnx_output
input_all = [node.name for node in onnx_model.graph.input]
......@@ -187,7 +196,7 @@ def test_roialign():
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 2)
sess = rt.InferenceSession(onnx_file)
sess = rt.InferenceSession(onnx_file, session_options)
onnx_output = sess.run(None, {
'input': input.detach().numpy(),
'rois': rois.detach().numpy()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment