Unverified Commit 5b279fbd authored by Zaida Zhou's avatar Zaida Zhou Committed by GitHub
Browse files

[Docs] Refine reamde and installation (#2340)

* [Docs] Simplify README

* Simplify README_zh-CN

* Update installation docs

* Add mmyolo link in README

* update introduction

* update installation

* Update build docs

* remove io link in README

* update
parent cb2eb576
This diff is collapsed.
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
</div> </div>
[![docs](https://img.shields.io/badge/docs-2.x-blue)](https://mmcv.readthedocs.io/zh_CN/2.x/) [![docs](https://img.shields.io/badge/docs-2.x-blue)](https://mmcv.readthedocs.io/zh_CN/2.x/)
[![platform](https://img.shields.io/badge/platform-Linux%7CWindows%7CmacOS-blue)](https://mmcv.readthedocs.io/zh_CN/2.x/get_started/installation.html)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/)
[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv) [![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv)
[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions) [![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions)
...@@ -30,43 +31,21 @@ ...@@ -30,43 +31,21 @@
## 简介 ## 简介
MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目,例如 MMCV 是一个面向计算机视觉的基础库,它提供了以下功能
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMLab 项目、算法、模型的统一入口 - [图像和视频处理](https://mmcv.readthedocs.io/zh_CN/2.x/understand_mmcv/data_process.html)
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱 - [图像和标注结果可视化](https://mmcv.readthedocs.io/zh_CN/2.x/understand_mmcv/visualization.html)
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱 - [图像变换](https://mmcv.readthedocs.io/zh_CN/2.x/understand_mmcv/data_transform.html)
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台 - [多种 CNN 网络结构](https://mmcv.readthedocs.io/zh_CN/2.x/understand_mmcv/cnn.html)
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准 - [高质量实现的常见 CUDA 算子](https://mmcv.readthedocs.io/zh_CN/2.x/understand_mmcv/ops.html)
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
MMCV 提供了如下众多功能:
- 通用的 IO 接口 MMCV 支持多种平台,包括:
- 图像和视频处理
- 图像和标注结果可视化
- 图像变换
- 多种 CNN 网络结构
- 高质量实现的常见 CUDA 算子
MMCV 支持以下的系统:
- Linux - Linux
- Windows - Windows
- macOS - macOS
如想了解更多特性和使用,请参考[文档](http://mmcv.readthedocs.io/zh_CN/latest) 如想了解更多特性和使用,请参考[文档](http://mmcv.readthedocs.io/zh_CN/2.x)
提示: MMCV 需要 Python 3.6 以上版本。 提示: MMCV 需要 Python 3.6 以上版本。
...@@ -79,177 +58,57 @@ MMCV 有两个版本: ...@@ -79,177 +58,57 @@ MMCV 有两个版本:
**注意**: 请不要在同一个环境中安装两个版本,否则可能会遇到类似 `ModuleNotFound` 的错误。在安装一个版本之前,需要先卸载另一个。`如果 CUDA 可用,强烈推荐安装 mmcv` **注意**: 请不要在同一个环境中安装两个版本,否则可能会遇到类似 `ModuleNotFound` 的错误。在安装一个版本之前,需要先卸载另一个。`如果 CUDA 可用,强烈推荐安装 mmcv`
a. 安装完整版 ### 安装 mmcv
在安装 mmcv 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 PyTorch [官方文档](https://pytorch.org/)。对于使用 macOS M1 的用户,请确保你的 PyTorch 是 `Nightly` 版本。
我们提供了 **Linux 和 Windows 平台** PyTorch 和 CUDA 版本组合的 mmcv 预编译包,可以大大简化用户安装编译过程。强烈推荐通过预编译包来安装。另外,安装完成后可以运行 [check_installation.py](.dev_scripts/check_installation.py) 脚本检查 mmcv 是否安装成功。
i. 安装最新版本 在安装 mmcv 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://github.com/pytorch/pytorch#installation)
如下是安装最新版 `mmcv` 的命令 在 Linux 和 Windows 平台安装 mmcv 的命令如下(如果你的系统是 macOS,请参考[源码安装 mmcv](https://mmcv.readthedocs.io/zh_CN/2.x/get_started/build.html#macos-mmcv)
```shell ```bash
pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html pip install -U openmim
mim install 'mmcv>=2.0.0rc1'
``` ```
请将链接中的 `{cu_version}``{torch_version}` 根据自身需求替换成实际的版本号,例如想安装和 `CUDA 11.1``PyTorch 1.9.0` 兼容的最新版 `mmcv`,使用如下替换过的命令 如果需要指定 mmcv 的版本,可以使用以下命令
```shell ```bash
pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html mim install mmcv==2.0.0rc1
``` ```
**注意**: PyTorch 在 1.x.0 和 1.x.1 之间通常是兼容的,故 mmcv 只提供 1.x.0 的编译包。如果你的 PyTorch 版本是 1.x.1,你可以放心地安装在 1.x.0 版本编译的 mmcv。例如,如果你的 PyTorch 版本是 1.8.1、CUDA 版本是 11.1,你可以使用以下命令安装 mmcv。 如果发现上述的安装命令没有使用预编译包(以 `.whl` 结尾)而是使用源码包(以 `.tar.gz` 结尾)安装,则有可能是我们没有提供和当前环境的 PyTorch 版本、CUDA 版本相匹配的 mmcv 预编译包,此时,你可以[源码安装 mmcv](https://mmcv.readthedocs.io/zh_CN/2.x/get_started/build.html)
```shell
pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
```
如果想知道更多 CUDA 和 PyTorch 版本的命令,可以参考下面的表格,将链接中的 `=={mmcv_version}` 删去即可。 <details>
<summary>使用预编译包的安装日志</summary>
ii. 安装特定的版本 Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv<br />
<b>Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv-2.0.0rc1-cp38-cp38-manylinux1_x86_64.whl</b>
如下是安装特定版本 `mmcv` 的命令 </details>
```shell <details>
pip install mmcv=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html <summary>使用源码包的安装日志</summary>
```
首先请参考版本发布信息找到想要安装的版本号,将 `{mmcv_version}` 替换成该版本号,例如 `2.0.0rc1` Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
然后将链接中的 `{cu_version}``{torch_version}` 根据自身需求替换成实际的版本号,例如想安装和 `CUDA 11.1``PyTorch 1.9.0` 兼容的 `mmcv` 2.0.0rc1 版本,使用如下替换过的命令 Collecting mmcv==2.0.0rc1<br />
<b>Downloading mmcv-2.0.0rc1.tar.gz</b>
```shell </details>
pip install mmcv==2.0.0rc1 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
```
对于更多的 PyTorch 和 CUDA 版本组合,请参考下表: 更多安装方式请参考[安装文档](https://mmcv.readthedocs.io/zh_CN/2.x/get_started/installation.html)
<table class="docutils">
<tbody>
<tr>
<th width="80"> CUDA </th>
<th valign="bottom" align="left" width="120">torch 1.12</th>
<th valign="bottom" align="left" width="120">torch 1.11</th>
<th valign="bottom" align="left" width="120">torch 1.10</th>
<th valign="bottom" align="left" width="120">torch 1.9</th>
<th valign="bottom" align="left" width="120">torch 1.8</th>
<th valign="bottom" align="left" width="120">torch 1.7</th>
<th valign="bottom" align="left" width="120">torch 1.6</th>
</tr>
<tr>
<td align="left">11.6</td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">11.5</td>
<td align="left"></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu115/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">11.3</td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.12.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">11.1</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.0</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"></td>
</tr>
<tr>
<td align="left">10.2</td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.12.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.10.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">10.1</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">9.2</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.6.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">cpu</td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.12.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> 安装 </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.6.0/index.html</code></pre> </details> </td>
</tr>
</tbody>
</table>
**注意**:mmcv 没有提供 Windows 平台 `cu102-torch1.8.0``cu92-torch*` 的预编译包。
除了使用预编译包之外,另一种方式是在本地进行编译,直接运行下述命令
```python
pip install 'mmcv>=2.0.0rc1'
```
但注意本地编译可能会耗时 10 分钟以上。 ### 安装 mmcv-lite
b. 安装精简版 如果你需要使用和 PyTorch 相关的模块,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://github.com/pytorch/pytorch#installation)
```python ```bash
pip install mmcv-lite pip install -U openmim
mim install 'mmcv-lite>=2.0.0rc1'
``` ```
如果想从源码编译 MMCV,请参考[该文档](https://mmcv.readthedocs.io/zh_CN/2.x/get_started/build.html)
## FAQ ## FAQ
如果你遇到了安装问题,CUDA 相关的问题或者 RuntimeErrors,可以首先参考[问题解决页面](https://mmcv.readthedocs.io/zh_CN/2.x/faq.html)是否已有解决方案。 如果你遇到了安装问题或者运行时问题,请查看[问题解决页面](https://mmcv.readthedocs.io/zh_CN/2.x/faq.html)是否已有解决方案。如果问题仍然没有解决,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
## 贡献指南 ## 贡献指南
...@@ -259,6 +118,30 @@ pip install mmcv-lite ...@@ -259,6 +118,30 @@ pip install mmcv-lite
`MMCV` 目前以 Apache 2.0 的许可证发布,但是其中有一部分功能并不是使用的 Apache2.0 许可证,我们在 [许可证](LICENSES.md) 中详细地列出了这些功能以及他们对应的许可证,如果您正在从事盈利性活动,请谨慎参考此文档。 `MMCV` 目前以 Apache 2.0 的许可证发布,但是其中有一部分功能并不是使用的 Apache2.0 许可证,我们在 [许可证](LICENSES.md) 中详细地列出了这些功能以及他们对应的许可证,如果您正在从事盈利性活动,请谨慎参考此文档。
## OpenMMLab 的其他项目
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区 ## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=3ijNTqfg),或添加微信小助手”OpenMMLabwx“加入官方交流微信群。 扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=3ijNTqfg),或添加微信小助手”OpenMMLabwx“加入官方交流微信群。
......
...@@ -16,5 +16,8 @@ RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 \ ...@@ -16,5 +16,8 @@ RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Install mmcv # Install mmcv
ARG MMCV="2.0.0rc1" ARG MMCV=""
RUN pip install openmim && mim install mmcv==${MMCV} && python -c 'import mmcv;print(mmcv.__version__)' RUN if [ "${MMCV}" = "" ]; then pip install -U openmim && mim install 'mmcv>=2.0.0rc1'; else pip install -U openmim && mim install mmcv==${MMCV}; fi
# Verify the installation
RUN python -c 'import mmcv;print(mmcv.__version__)'
{
"Linux": [
{
"cuda": "11.6",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.5",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.0",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "9.2",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "9.2",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
}
],
"Windows": [
{
"cuda": "11.6",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.5",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
}
]
}
...@@ -58,6 +58,8 @@ extensions = [ ...@@ -58,6 +58,8 @@ extensions = [
myst_heading_anchors = 4 myst_heading_anchors = 4
myst_enable_extensions = ['colon_fence']
# Configuration for intersphinx # Configuration for intersphinx
intersphinx_mapping = { intersphinx_mapping = {
'python': ('https://docs.python.org/3', None), 'python': ('https://docs.python.org/3', None),
......
## Build MMCV from source ## Build MMCV from source
### Build on Linux or macOS ### Build mmcv
Clone the repo with Before installing mmcv, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://pytorch.org/get-started/locally/#start-locally). This can be verified using the following command
```bash ```bash
git clone https://github.com/open-mmlab/mmcv.git python -c 'import torch;print(torch.__version__)'
cd mmcv
git checkout 2.x
``` ```
It is recommended to install `ninja` to speed up the compilation If version information is output, then PyTorch is installed.
```bash ```{note}
pip install -r requirements/optional.txt If you would like to use `opencv-python-headless` instead of `opencv-python`,
e.g., in a minimum container environment or servers without GUI,
you can first install it before installing MMCV to skip the installation of `opencv-python`.
``` ```
You can either #### Build on Linux
- install the lite version 1. Clone the repo
```bash ```bash
MMCV_WITH_OPS=0 pip install -e . git clone https://github.com/open-mmlab/mmcv.git
``` cd mmcv
```
- or install the full version 2. Install `ninja` and `psutil` to speed up the compilation
```bash ```bash
pip install -e . pip install -r requirements/optional.txt
``` ```
If you are on macOS, add the following environment variables before the installing command. Meanwhile, please make sure you are using `PyTorch Nightly` in macOS M1. 3. Check the nvcc version (requires 9.2+. Skip if no GPU available.)
```bash ```bash
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++' nvcc --version
``` ```
e.g., If the above command outputs the following message, it means that the nvcc setting is OK, otherwise you need to set CUDA_HOME.
```bash ```
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++' pip install -e . nvcc: NVIDIA (R) Cuda compiler driver
``` Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
```
:::{note}
If you want to support ROCm, you can refer to [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) to install ROCm.
:::
4. Check the gcc version (requires 5.4+)
```bash
gcc --version
```
5. Start building (takes 10+ min)
```bash
pip install -e . -v
```
6. Validate the installation
```bash
python .dev_scripts/check_installation.py
```
If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
#### Build on macOS
```{note} ```{note}
If you would like to use `opencv-python-headless` instead of `opencv-python`, If you are using a mac with an M1 chip, install the nightly version of PyTorch, otherwise you will encounter the problem in [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218).
e.g., in a minimum container environment or servers without GUI,
you can first install it before installing MMCV to skip the installation of `opencv-python`.
``` ```
### Build on Windows 1. Clone the repo
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
2. Install `ninja` and `psutil` to speed up the compilation
```bash
pip install -r requirements/optional.txt
```
3. Start building
```bash
MMCV_WITH_OPS=1 pip install -e .
```
4. Validate the installation
```bash
python .dev_scripts/check_installation.py
```
If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
#### Build on Windows
Building MMCV on Windows is a bit more complicated than that on Linux. Building MMCV on Windows is a bit more complicated than that on Linux.
The following instructions show how to get this accomplished. The following instructions show how to get this accomplished.
#### Prerequisite ##### Prerequisite
The following software is required for building MMCV on windows. The following software is required for building MMCV on windows.
Install them first. Install them first.
...@@ -72,7 +132,7 @@ Install them first. ...@@ -72,7 +132,7 @@ Install them first.
You should know how to set up environment variables, especially `Path`, on Windows. The following instruction relies heavily on this skill. You should know how to set up environment variables, especially `Path`, on Windows. The following instruction relies heavily on this skill.
``` ```
#### Setup Python Environment ##### Common steps
1. Launch Anaconda prompt from Windows Start menu 1. Launch Anaconda prompt from Windows Start menu
...@@ -80,63 +140,39 @@ You should know how to set up environment variables, especially `Path`, on Windo ...@@ -80,63 +140,39 @@ You should know how to set up environment variables, especially `Path`, on Windo
2. Create a new conda environment 2. Create a new conda environment
```shell ```powershell
conda create --name mmcv python=3.7 # 3.6, 3.7, 3.8 should work too as tested (base) PS C:\Users\xxx> conda create --name mmcv python=3.7
conda activate mmcv # make sure to activate environment before any operation (base) PS C:\Users\xxx> conda activate mmcv # make sure to activate environment before any operation
``` ```
3. Install PyTorch. Choose a version based on your need. 3. Install PyTorch. Choose a version based on your need.
```shell ```powershell
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch # CUDA version
(mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# CPU version
(mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch
``` ```
We only tested PyTorch version >= 1.6.0. 4. Clone the repo
4. Prepare MMCV source code ```powershell
(mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git
```shell (mmcv) PS C:\Users\xxx\mmcv> cd mmcv
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
git checkout 2.x
``` ```
5. Install required Python packages 5. Install `ninja` and `psutil` to speed up the compilation
```shell ```powershell
pip install -r requirements/runtime.txt (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt
``` ```
6. It is recommended to install `ninja` to speed up the compilation 6. Set up MSVC compiler
```bash
pip install -r requirements/optional.txt
```
#### Build and install MMCV
MMCV can be built in three ways:
1. Lite version (without ops)
In this way, no custom ops are compiled and mmcv is a pure python package.
2. Full version (CPU ops)
Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only.
3. Full version (CUDA ops)
Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented).
##### Common steps
1. Set up MSVC compiler
Set Environment variable, add `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64` to `PATH`, so that `cl.exe` will be available in prompt, as shown below. Set Environment variable, add `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64` to `PATH`, so that `cl.exe` will be available in prompt, as shown below.
```none ```powershell
(base) PS C:\Users\xxx> cl (mmcv) PS C:\Users\xxx\mmcv> cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64 Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64
Copyright (C) Microsoft Corporation. All rights reserved. Copyright (C) Microsoft Corporation. All rights reserved.
...@@ -147,128 +183,110 @@ MMCV can be built in three ways: ...@@ -147,128 +183,110 @@ MMCV can be built in three ways:
You may want to change the system language to English because pytorch will parse text output from `cl.exe` to check its version. However only utf-8 is recognized. Navigate to Control Panel -> Region -> Administrative -> Language for Non-Unicode programs and change it to English. You may want to change the system language to English because pytorch will parse text output from `cl.exe` to check its version. However only utf-8 is recognized. Navigate to Control Panel -> Region -> Administrative -> Language for Non-Unicode programs and change it to English.
##### Option 1: Build MMCV (lite version) ##### Build and install MMCV
After finishing above common steps, launch Anaconda shell from Start menu and issue the following commands:
```shell mmcv can be built in two ways:
# activate environment
conda activate mmcv
# change directory
cd mmcv
git checkout 2.x
# install
python setup.py develop
# check
pip list
```
##### Option 2: Build MMCV (full version with CPU) 1. Full version (CPU ops)
1. Finish above common steps Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only.
2. Set up environment variables 2. Full version (CUDA ops)
```shell Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented).
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # based on your available number of CPU cores and amount of memory
```
3. Following build steps of the lite version ###### CPU version
```shell Build and install
# activate environment
conda activate mmcv
# change directory
cd mmcv
git checkout 2.x
# build
python setup.py build_ext # if success, cl will be launched to compile ops
# install
python setup.py develop
# check
pip list
```
##### Option 3: Build MMCV (full version with CUDA) ```powershell
(mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext
(mmcv) PS C:\Users\xxx\mmcv> python setup.py develop
```
1. Finish above common steps ###### GPU version
2. Make sure `CUDA_PATH` or `CUDA_HOME` is already set in `envs` via `ls env:`, desired output is shown as below: 1. Make sure `CUDA_PATH` or `CUDA_HOME` is already set in `envs` via `ls env:`, desired output is shown as below:
```none ```powershell
(base) PS C:\Users\WRH> ls env: (mmcv) PS C:\Users\xxx\mmcv> ls env:
Name Value Name Value
---- ----- ---- -----
<... omit some lines ...>
CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V10_2 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 CUDA_PATH_V10_2 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
<... omit some lines ...>
``` ```
This should already be done by CUDA installer. If not, or you have multiple version of CUDA toolkit installed, set it with This should already be done by CUDA installer. If not, or you have multiple version of CUDA toolkit installed, set it with
```shell ```powershell
$env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2" (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
# OR # OR
$env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs: (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs:
``` ```
3. Set CUDA target arch 2. Set CUDA target arch
```shell ```shell
# Suppose you are using GTX 1080, which is of capability 6.1 # Here you need to change to the target architecture corresponding to your GPU
$env:TORCH_CUDA_ARCH_LIST="6.1" (mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5"
# OR build all supported arch, will be slow
$env:TORCH_CUDA_ARCH_LIST="3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5"
``` ```
```{note} :::{note}
Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus). Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus).
```
4. Launch compiling the same way as CPU ```powershell
(mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe"
Device 0: "NVIDIA GeForce GTX 1660 SUPER"
CUDA Driver Version / Runtime Version 11.7 / 11.1
CUDA Capability Major/Minor version number: 7.5
```
```shell The 7.5 above indicates the target architecture. Note: You need to replace v10.2 with your CUDA version in the above command.
$env:MMCV_WITH_OPS = 1 :::
$env:MAX_JOBS = 8 # based on available number of CPU cores and amount of memory
# activate environment 3. Build and install
conda activate mmcv
# change directory ```powershell
cd mmcv
git checkout 2.x
# build # build
python setup.py build_ext # if success, cl will be launched to compile ops python setup.py build_ext # if success, cl will be launched to compile ops
# install # install
python setup.py develop python setup.py develop
# check
pip list
``` ```
```{note} ```{note}
If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation. If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation.
``` ```
If you meet issues when running or compiling mmcv, we list some common issues in [Frequently Asked Question](../faq.html). ##### Validate installation
## \[Optional\] Build MMCV on IPU machine ```powershell
(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py
```
Firstly, you need to apply for an IPU cloud machine, see [here](https://www.graphcore.ai/ipus-in-the-cloud). If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
### Option 1: Docker ### Build mmcv-lite
1. Pull docker If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
```shell 1. Clone the repo
docker pull graphcore/pytorch
```
2. Build MMCV under same python environment ```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
### Option 2: Install from SDK 2. Start building
1. Build MMCV ```bash
MMCV_WITH_OPS=0 pip install -e . -v
```
2. Use pip to install sdk according to [IPU PyTorch document](https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/installation.html). Also, you need to apply for machine and sdk to Graphcore. 3. Validate installation
```bash
python -c 'import mmcv;print(mmcv.__version__)'
```
This diff is collapsed.
## Introduction ## Introduction
MMCV is a foundational library for computer vision research and supports many MMCV is a foundational library for computer vision research and provides the following functionalities.
research projects as below:
- [Image/Video processing](../understand_mmcv/data_process.md)
- [Image and annotation visualization](../understand_mmcv/visualization.md)
- [Image transformation](../understand_mmcv/data_transform.md)
- [Various CNN architectures](../understand_mmcv/cnn.md)
- [High-quality implementation of common CUDA ops](../understand_mmcv/ops.md)
It supports the following systems:
- Linux
- Windows
- macOS
It supports many research projects as below:
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
...@@ -21,22 +34,3 @@ research projects as below: ...@@ -21,22 +34,3 @@ research projects as below:
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
It provides the following functionalities:
- Universal IO APIs
- Image/Video processing
- Image and annotation visualization
- Image transformation
- Various CNN architectures
- High-quality implementation of common CUDA ops
It supports the following systems.
- Linux
- Windows
- macOS
```{note}
MMCV requires Python 3.6+.
```
...@@ -16,6 +16,7 @@ You can switch between Chinese and English documents in the lower-left corner of ...@@ -16,6 +16,7 @@ You can switch between Chinese and English documents in the lower-left corner of
:caption: Understand MMCV :caption: Understand MMCV
understand_mmcv/data_process.md understand_mmcv/data_process.md
understand_mmcv/data_transform.md
understand_mmcv/visualization.md understand_mmcv/visualization.md
understand_mmcv/cnn.md understand_mmcv/cnn.md
understand_mmcv/ops.md understand_mmcv/ops.md
......
{
"Linux": [
{
"cuda": "11.6",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.5",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.0",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "9.2",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "9.2",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
}
],
"Windows": [
{
"cuda": "11.6",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.5",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.3",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "11.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.2",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "10.1",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.12.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.11.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.10.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.9.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.8.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.7.x",
"mmcv": [
"2.0.0rc1"
]
},
{
"cuda": "cpu",
"torch": "1.6.x",
"mmcv": [
"2.0.0rc1"
]
}
]
}
...@@ -59,6 +59,8 @@ extensions = [ ...@@ -59,6 +59,8 @@ extensions = [
myst_heading_anchors = 4 myst_heading_anchors = 4
myst_enable_extensions = ['colon_fence']
# Configuration for intersphinx # Configuration for intersphinx
intersphinx_mapping = { intersphinx_mapping = {
'python': ('https://docs.python.org/3', None), 'python': ('https://docs.python.org/3', None),
......
## 从源码编译 MMCV ## 从源码编译 MMCV
### 在 Linux 或者 macOS 上编译 MMCV ### 编译 mmcv
克隆算法库 在编译 mmcv 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)。可使用以下命令验证
```bash ```bash
git clone https://github.com/open-mmlab/mmcv.git python -c 'import torch;print(torch.__version__)'
cd mmcv
git checkout 2.x
``` ```
建议安装 `ninja` 以加快编译速度 :::{note}
```bash - 如果克隆代码仓库的速度过慢,可以使用以下命令克隆(注意:gitee 的 mmcv 不一定和 github 的保持一致,因为每天只同步一次)
pip install -r requirements/optional.txt
```
你可以安装 lite 版本
```bash ```bash
MMCV_WITH_OPS=0 pip install -e . git clone https://gitee.com/open-mmlab/mmcv.git
``` ```
也可以安装 full 版本 - 如果打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`
- 如果编译过程安装依赖库的时间过长,可以[设置 pypi 源](https://mirrors.tuna.tsinghua.edu.cn/help/pypi/)
```bash ```bash
pip install -e . pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
``` ```
如果是在 macOS 上编译,则需要在安装命令前添加一些环境变量,同时对于使用 macOS M1 的用户,请确保你的 PyTorch 是 `Nightly` 版本。 :::
```bash #### 在 Linux 上编译 mmcv
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++'
```
例如 | TODO: 视频教程
```bash 1. 克隆代码仓库
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++' pip install -e .
```
```{note} ```bash
如果你打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python` git clone https://github.com/open-mmlab/mmcv.git
``` cd mmcv
```
### 在 Windows 上编译 MMCV 2. 安装 `ninja``psutil` 以加快编译速度
在 Windows 上编译 MMCV 比 Linux 复杂,本节将一步步介绍如何在 Windows 上编译 MMCV。 ```bash
pip install -r requirements/optional.txt
```
#### 依赖项 3. 检查 nvcc 的版本(要求大于等于 9.2,如果没有 GPU,可以跳过)
请首先安装以下的依赖项: ```bash
nvcc --version
```
- [Git](https://git-scm.com/download/win):安装期间,请选择 **add git to Path** 上述命令如果输出以下信息,表示 nvcc 的设置没有问题,否则需要设置 CUDA_HOME
- [Visual Studio Community 2019](https://visualstudio.microsoft.com):用于编译 C++ 和 CUDA 代码
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html):包管理工具
- [CUDA 10.2](https://developer.nvidia.com/cuda-10.2-download-archive):如果只需要 CPU 版本可以不安装 CUDA,安装CUDA时,可根据需要进行自定义安装。如果已经安装新版本的显卡驱动,建议取消驱动程序的安装
```{note} ```
您需要知道如何在 Windows 上设置变量环境,尤其是 "PATH" 的设置,以下安装过程都会用到。 nvcc: NVIDIA (R) Cuda compiler driver
``` Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
```
#### 设置 Python 环境 :::{note}
如果想要支持 ROCm,可以参考 [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) 安装 ROCm。
:::
1. 从 Windows 菜单启动 Anaconda 命令行 4. 检查 gcc 的版本(要求大于等于**5.4**
```{note} ```bash
如 Miniconda 安装程序建议,不要使用原始的 `cmd.exe` 或是 `powershell.exe`。命令行有两个版本,一个基于 PowerShell,一个基于传统的 `cmd.exe`。请注意以下说明都是使用的基于 PowerShell gcc --version
``` ```
2. 创建一个新的 Conda 环境 5. 开始编译(预估耗时 10 分钟)
```shell ```bash
conda create --name mmcv python=3.7 # 经测试,3.6, 3.7, 3.8 也能通过 pip install -e . -v
conda activate mmcv # 确保做任何操作前先激活环境
``` ```
3. 安装 PyTorch 时,可以根据需要安装支持 CUDA 或不支持 CUDA 的版本 6. 验证安装
```shell ```bash
# CUDA version python .dev_scripts/check_installation.py
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# CPU version
conda install pytorch torchvision cpuonly -c pytorch
``` ```
4. 准备 MMCV 源代码 如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.html)是否已经有解决方案。
如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
#### 在 macOS 上编译 mmcv
```shell | TODO: 视频教程
```{note}
如果你使用的 mac 是 M1 芯片,请安装 PyTorch 的 nightly 版本,否则会遇到 [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218) 中的问题。
```
1. 克隆代码仓库
```bash
git clone https://github.com/open-mmlab/mmcv.git git clone https://github.com/open-mmlab/mmcv.git
cd mmcv cd mmcv
``` ```
5. 安装所需 Python 依赖包 2. 安装 `ninja``psutil` 以加快编译速度
```shell ```bash
pip3 install -r requirements/runtime.txt pip install -r requirements/optional.txt
``` ```
6. 建议安装 `ninja` 以加快编译速度 3. 开始编译
```bash ```bash
pip install -r requirements/optional.txt pip install -e .
``` ```
#### 编译与安装 MMCV 4. 验证安装
MMCV 有三种安装的模式: ```bash
python .dev_scripts/check_installation.py
```
如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.md)是否已经有解决方案。
如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
1. Lite 版本(不包含算子) #### 在 Windows 上编译 mmcv
这种方式下,没有算子被编译,这种模式的 mmcv 是原生的 python 包 | TODO: 视频教程
2. Full 版本(只包含 CPU 算子) 在 Windows 上编译 mmcv 比 Linux 复杂,本节将一步步介绍如何在 Windows 上编译 mmcv。
编译 CPU 算子,但只有 x86 将会被编译,并且编译版本只能在 CPU only 情况下运行 ##### 依赖项
3. Full 版本(既包含 CPU 算子,又包含 CUDA 算子) 请先安装以下的依赖项:
- [Git](https://git-scm.com/download/win):安装期间,请选择 **add git to Path**
- [Visual Studio Community 2019](https://visualstudio.microsoft.com):用于编译 C++ 和 CUDA 代码
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html):包管理工具
- [CUDA 10.2](https://developer.nvidia.com/cuda-10.2-download-archive):如果只需要 CPU 版本可以不安装 CUDA,安装 CUDA 时,可根据需要进行自定义安装。如果已经安装新版本的显卡驱动,建议取消驱动程序的安装
同时编译 CPU 和 CUDA 算子,`ops` 模块的 x86 与 CUDA 的代码都可以被编译。同时编译的版本可以在 CUDA 上调用 GPU ```{note}
如果不清楚如何安装以上依赖,请参考[Windows 环境从零安装 mmcv](https://zhuanlan.zhihu.com/p/434491590)。
另外,你需要知道如何在 Windows 上设置变量环境,尤其是 "PATH" 的设置,以下安装过程都会用到。
```
##### 通用步骤 ##### 通用步骤
1. 设置 MSVC 编译器 1. 从 Windows 菜单启动 Anaconda 命令行
如 Miniconda 安装程序建议,不要使用原始的 `cmd.exe` 或是 `powershell.exe`。命令行有两个版本,一个基于 PowerShell,一个基于传统的 `cmd.exe`。请注意以下说明都是使用的基于 PowerShell
2. 创建一个新的 Conda 环境
```powershell
(base) PS C:\Users\xxx> conda create --name mmcv python=3.7
(base) PS C:\Users\xxx> conda activate mmcv # 确保做任何操作前先激活环境
```
3. 安装 PyTorch 时,可以根据需要安装支持 CUDA 或不支持 CUDA 的版本
```powershell
# CUDA version
(mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# CPU version
(mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch
```
4. 克隆代码仓库
```powershell
(mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git
(mmcv) PS C:\Users\xxx> cd mmcv
```
5. 安装 `ninja``psutil` 以加快编译速度
```powershell
(mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt
```
6. 设置 MSVC 编译器
设置环境变量。添加 `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64``PATH`,则 `cl.exe` 可以在命令行中运行,如下所示。 设置环境变量。添加 `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64``PATH`,则 `cl.exe` 可以在命令行中运行,如下所示。
```none ```powershell
(base) PS C:\Users\xxx> cl (mmcv) PS C:\Users\xxx\mmcv> cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64 Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64
Copyright (C) Microsoft Corporation. All rights reserved. Copyright (C) Microsoft Corporation. All rights reserved.
...@@ -138,60 +193,33 @@ MMCV 有三种安装的模式: ...@@ -138,60 +193,33 @@ MMCV 有三种安装的模式:
因为 PyTorch 将解析 `cl.exe` 的输出以检查其版本,只有 utf-8 将会被识别,你可能需要将系统语言更改为英语。控制面板 -> 地区-> 管理-> 非 Unicode 来进行语言转换。 因为 PyTorch 将解析 `cl.exe` 的输出以检查其版本,只有 utf-8 将会被识别,你可能需要将系统语言更改为英语。控制面板 -> 地区-> 管理-> 非 Unicode 来进行语言转换。
##### 安装方式一:Lite version(不包含算子) ##### 编译与安装 mmcv
在完成上述的公共步骤后,从菜单打开 Anaconda 命令框,输入以下命令
```shell
# 激活环境
conda activate mmcv
# 切换到 mmcv 根目录
cd mmcv
# 切换到 2.x 分支
git checkout 2.x
# 安装
python setup.py develop
# 检查是否安装成功
pip list
```
##### 安装方式二:Full version(只编译 CPU 算子) mmcv 有两个版本:
1. 完成上述的公共步骤 - 只包含 CPU 算子的版本
2. 设置环境变量 编译 CPU 算子,但只有 x86 将会被编译,并且编译版本只能在 CPU only 情况下运行
```shell - 既包含 CPU 算子,又包含 CUDA 算子的版本
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # 根据你可用CPU以及内存量进行设置
```
3. 编译安装 同时编译 CPU 和 CUDA 算子,`ops` 模块的 x86 与 CUDA 的代码都可以被编译。同时编译的版本可以在 CUDA 上调用 GPU
```shell ###### CPU 版本
conda activate mmcv # 激活环境
cd mmcv # 改变路径
git checkout 2.x # 切换到 2.x 分支
python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
python setup.py develop # 安装
pip list # 检查是否安装成功
```
##### 安装方式三:Full version(既编译 CPU 算子又编译 CUDA 算子) 编译安装
1. 完成上述的公共步骤 ```powershell
(mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
(mmcv) PS C:\Users\xxx\mmcv> python setup.py develop # 安装
```
2. 设置环境变量 ###### GPU 版本
```shell 1. 检查 `CUDA_PATH` 或者 `CUDA_HOME` 环境变量已经存在在 `envs` 之中
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # 根据你可用CPU以及内存量进行设置
```
3. 检查 `CUDA_PATH` 或者 `CUDA_HOME` 环境变量已经存在在 `envs` 之中 ```powershell
(mmcv) PS C:\Users\xxx\mmcv> ls env:
```none
(base) PS C:\Users\WRH> ls env:
Name Value Name Value
---- ----- ---- -----
...@@ -202,39 +230,71 @@ pip list ...@@ -202,39 +230,71 @@ pip list
如果没有,你可以按照下面的步骤设置 如果没有,你可以按照下面的步骤设置
```shell ```powershell
$env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2" (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
# 或者 # 或者
$env:CUDA_HOME = $env:CUDA_PATH_V10_2 # CUDA_PATH_V10_2 已经在环境变量中 (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # CUDA_PATH_V10_2 已经在环境变量中
``` ```
4. 设置 CUDA 的目标架构 2. 设置 CUDA 的目标架构
```shell ```powershell
$env:TORCH_CUDA_ARCH_LIST="6.1" # 支持 GTX 1080 # 这里需要改成你的显卡对应的目标架构
# 或者用所有支持的版本,但可能会变得很慢 (mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5"
$env:TORCH_CUDA_ARCH_LIST="3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5"
``` ```
```{note} :::{note}
我们可以在 [here](https://developer.nvidia.com/cuda-gpus) 查看 GPU 的计算能力 可以点击 [cuda-gpus](https://developer.nvidia.com/cuda-gpus) 查看 GPU 的计算能力,也可以通过 CUDA 目录下的 deviceQuery.exe 工具查看
```
```powershell
(mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe"
Device 0: "NVIDIA GeForce GTX 1660 SUPER"
CUDA Driver Version / Runtime Version 11.7 / 11.1
CUDA Capability Major/Minor version number: 7.5
```
上面的 7.5 表示目标架构。注意:需把上面命令的 v10.2 换成你的 CUDA 版本。
:::
3. 编译安装
5. 编译安装 ```powershell
(mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
(mmcv) PS C:\Users\xxx\mmcv> python setup.py develop # 安装
```
```shell ```{note}
$env:MMCV_WITH_OPS = 1 如果你的 PyTorch 版本是 1.6.0,你可能会遇到一些 [issue](https://github.com/pytorch/pytorch/issues/42467) 提到的错误,你可以参考这个 [pull request](https://github.com/pytorch/pytorch/pull/43380/files) 修改本地环境的 PyTorch 源代码
$env:MAX_JOBS = 8 # 根据你可用CPU以及内存量进行设置
conda activate mmcv # 激活环境
cd mmcv # 改变路径
git checkout 2.x # 切换到 2.x 分支
python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
python setup.py develop # 安装
pip list # 检查是否安装成功
``` ```
```{note} ##### 验证安装
如果你的 PyTorch 版本是 1.6.0,你可能会遇到一些这个 [issue](https://github.com/pytorch/pytorch/issues/42467) 提到的错误,则可以参考这个 [pull request](https://github.com/pytorch/pytorch/pull/43380/files) 修改 本地环境的 PyTorch 源代码
```powershell
(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py
``` ```
如果编译安装 mmcv 的过程中遇到了问题,你也许可以在 [Frequently Asked Question](../faq.html) 找到解决方法 如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.md)是否已经有解决方案。
如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
### 编译 mmcv-lite
如果你需要使用和 PyTorch 相关的模块,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)
1. 克隆代码仓库
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
2. 开始编译
```bash
MMCV_WITH_OPS=0 pip install -e . -v
```
3. 验证安装
```bash
python -c 'import mmcv;print(mmcv.__version__)'
```
This diff is collapsed.
## 介绍 MMCV ## 介绍 MMCV
MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目,例如: MMCV 是一个面向计算机视觉的基础库,它提供了以下功能:
- [图像和视频处理](../understand_mmcv/data_process.md)
- [图像和标注结果可视化](../understand_mmcv/visualization.md)
- [图像变换](../understand_mmcv/data_transform.md)
- [多种 CNN 网络结构](../understand_mmcv/cnn.md)
- [高质量实现的常见 CUDA 算子](../understand_mmcv/ops.md)
MMCV 支持多种平台,包括:
- Linux
- Windows
- macOS
它支持的 OpenMMLab 项目:
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱 - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱 - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台 - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准 - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱 - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱 - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱 - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
...@@ -20,25 +34,3 @@ MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目 ...@@ -20,25 +34,3 @@ MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱 - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱 - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架 - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
MMCV 提供了如下众多功能:
- 通用的 IO 接口
- 图像和视频处理
- 图像和标注结果可视化
- 常用小工具(进度条,计时器等)
- 基于 PyTorch 的通用训练框架
- 多种 CNN 网络结构
- 高质量实现的常见 CUDA 算子
MMCV 支持以下的系统:
- Linux
- Windows
- macOS
如想了解更多特性和使用,请参考[文档](https://mmcv.readthedocs.io/zh_CN/latest)
```{note}
MMCV 需要 Python 3.6 以上版本。
```
## <a href='https://mmcv.readthedocs.io/en/latest/'>English</a> ## <a href='https://mmcv.readthedocs.io/en/2.x/'>English</a>
## <a href='https://mmcv.readthedocs.io/zh_CN/latest/'>简体中文</a> ## <a href='https://mmcv.readthedocs.io/zh_CN/2.x/'>简体中文</a>
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment