Commit 4ab8127e authored by limm's avatar limm
Browse files

support 不转码编译修改

parent fdeee889
<div align="center">
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/mmcv-logo.png" width="300"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
</div>
# <div align="center"><strong>MMCV</strong></div>
## 简介
MMCV是计算机视觉研究的基础库,主要提供以下功能:图像处理、图像和标注结果可视化、图像转换、多种CNN网络结构、高质量实现的常见CUDA算子。DAS软件栈中的MMCV版本,不仅保证了组件核心功能在DCU加速卡的可用性,还针对DCU特有的硬件架构进行了深度定制优化。这使得开发者能够以极低的成本,轻松实现应用程序在DCU加速卡上的快速迁移和性能提升。
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmcv.readthedocs.io/en/latest/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/)
[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv)
[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv)
[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
## 安装
组件支持组合
English | [简体中文](README_zh-CN.md)
| PyTorch版本 | MMCV版本 | DTK版本 | Python版本 | 推荐编译方式 |
| ----------- | ----------- | ------------------------ | -------------------- | ------------ |
| 2.4.1 | 1.6.1 | 25.04 | 3.7、3.8、3.9、3.10 | fastpt不转码 |
## Introduction
MMCV is a foundational library for computer vision research and supports many
research projects as below:
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
It provides the following functionalities.
- Universal IO APIs
- Image/Video processing
- Image and annotation visualization
- Useful utilities (progress bar, timer, ...)
- PyTorch runner with hooking mechanism
- Various CNN architectures
- High-quality implementation of common CUDA ops
It supports the following systems.
- Linux
- Windows
- macOS
See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
Note: MMCV requires Python 3.6+.
## Installation
There are two versions of MMCV:
- **mmcv-full**: comprehensive, with full features and various CUDA ops out of box. It takes longer time to build.
- **mmcv**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
a. Install the full version.
Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [official guide](https://pytorch.org/).
We provide pre-built mmcv packages (recommended) with different PyTorch and CUDA versions to simplify the building for **Linux and Windows systems**. In addition, you can run [check_installation.py](.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands.
i. Install the latest version.
The rule for installing the latest `mmcv-full` is as follows:
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```
Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example,
to install the latest `mmcv-full` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
```
**Note**: mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well. For example, if your PyTorch version is 1.8.1 and CUDA version is 11.1, you can use the following command to install mmcv-full.
+ pytorch版本大于等于2.4.1 && dtk版本大于25.04 推荐使用fastpt不转码编译。
### 1、使用pip方式安装
mmcv whl包下载目录:[http://10.6.10.68:8000/debug/mmcv/dtk-24.04.1/](http://10.6.10.68:8000/debug/mmcv/dtk-24.04.1/),选择对应的pytorch版本和python版本下载对应mmcv的whl包
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
pip install mmcv* (下载的mmcv的whl包)
```
### 2、使用源码编译方式安装
For more details, please refer the the following tables and delete `=={mmcv_version}`.
#### 编译环境准备
提供基于fastpt不转码编译:
ii. Install a specified version.
The rule for installing a specified `mmcv-full` is as follows:
1. 基于光源pytorch基础镜像环境:镜像下载地址:[https://sourcefind.cn/#/image/dcu/pytorch](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本。
2. 基于现有python环境:安装pytorch,fastpt whl包下载目录:[http://10.6.10.68:8000/debug/pytorch/dtk24.04.1/](http://10.6.10.68:8000/debug/pytorch/dtk24.04.1/),根据python、dtk版本,下载对应pytorch的whl包。安装命令如下:
```shell
pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
pip install torch* (下载的torch的whl包)
pip install fastpt* (下载的fastpt的whl包, 安装顺序, 先安装torch,后安装fastpt)
pip install setuptools==59.5.0 wheel
```
First of all, please refer to the Releases and replace `{mmcv_version}` a specified one. e.g. `1.3.9`.
Then replace `{cu_version}` and `{torch_version}` in the url to your desired versions. For example,
to install `mmcv-full==1.3.9` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
#### 源码编译安装
- 代码下载
```shell
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
```
For more details, please refer the the following tables.
<table class="docutils">
<tbody>
<tr>
<th width="80"> CUDA </th>
<th valign="bottom" align="left" width="120">torch 1.11</th>
<th valign="bottom" align="left" width="120">torch 1.10</th>
<th valign="bottom" align="left" width="120">torch 1.9</th>
<th valign="bottom" align="left" width="120">torch 1.8</th>
<th valign="bottom" align="left" width="120">torch 1.7</th>
<th valign="bottom" align="left" width="120">torch 1.6</th>
<th valign="bottom" align="left" width="120">torch 1.5</th>
</tr>
<tr>
<td align="left">11.5</td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu115/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.3</td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.1</td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.0</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">10.2</td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.10.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">10.1</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">9.2</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">cpu</td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
</tbody>
</table>
**Note**: The pre-built packages provided above do not include all versions of mmcv-full, you can click on the corresponding links to see the supported versions. For example, you can click [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html) and you can see that `cu102-torch1.8.0` only provides 1.3.0 and above versions of mmcv-full. In addition, We no longer provide `mmcv-full` pre-built packages compiled with `PyTorch 1.3 & 1.4` since v1.3.17. You can find previous versions that compiled with PyTorch 1.3 & 1.4 [here](./docs/en/get_started/previous_versions.md). The compatibility is still ensured in our CI, but we will discard the support of PyTorch 1.3 & 1.4 next year.
**Note**: mmcv-full does not provide pre-built packages for `cu102-torch1.11` and `cu92-torch*` on Windows.
Another way is to compile locally by running
```python
pip install mmcv-full
git clone https://developer.hpccube.com/codes/aicomponent/mmcv # 根据编译需要切换分支
```
Note that the local compiling may take up to 10 mins.
b. Install the lite version.
```python
pip install mmcv
- 提供2种源码编译方式(进入mmcv目录):
```
1. 设置不转码编译环境变量
source /opt/dtk/cuda/env.sh
export USE_FASTPT_CUDA=1
c. Install full version with custom operators for onnxruntime
- Check [here](docs/en/deployment/onnxruntime_op.md) for detailed instruction.
If you would like to build MMCV from source, please refer to the [guide](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
2. 编译whl包并安装
MMCV_WITH_OPS=1 python3 setup.py -v bdist_wheel
pip install dist/mmcv*
## FAQ
If you face some installation issues, CUDA related issues or RuntimeErrors,
you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html).
## Citation
If you find this project useful in your research, please consider cite:
```latex
@misc{mmcv,
title={{MMCV: OpenMMLab} Computer Vision Foundation},
author={MMCV Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmcv}},
year={2018}
}
3. 源码编译安装
MMCV_WITH_OPS=1 python3 setup.py install
```
#### 注意事项
+ 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+ ROCM_PATH为dtk的路径,默认为/opt/dtk
+ 在pytorch2.5.1环境下编译需要支持c++17语法,打开setup.py文件,把文件中的 -std=c++14 修改为 -std=c++17
## Contributing
We appreciate all contributions to improve MMCV. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline.
## 验证
- python -c "import mmcv; mmcv.\_\_version__",版本号与官方版本同步,查询该软件的版本号,例如1.6.1;
## License
## Known Issue
-
MMCV is released under the Apache 2.0 license, while some specific operations in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters.
## 参考资料
- [README_ORIGIN](README_ORIGIN.md)
- [README_zh-CN](README_zh-CN.md)
- [https://github.com/open-mmlab/mmcv](https://github.com/open-mmlab/mmcv)
<div align="center">
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/mmcv-logo.png" width="300"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
</div>
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmcv.readthedocs.io/en/latest/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/)
[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv)
[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv)
[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
English | [简体中文](README_zh-CN.md)
## Introduction
MMCV is a foundational library for computer vision research and supports many
research projects as below:
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
It provides the following functionalities.
- Universal IO APIs
- Image/Video processing
- Image and annotation visualization
- Useful utilities (progress bar, timer, ...)
- PyTorch runner with hooking mechanism
- Various CNN architectures
- High-quality implementation of common CUDA ops
It supports the following systems.
- Linux
- Windows
- macOS
See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
Note: MMCV requires Python 3.6+.
## Installation
There are two versions of MMCV:
- **mmcv-full**: comprehensive, with full features and various CUDA ops out of box. It takes longer time to build.
- **mmcv**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
a. Install the full version.
Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [official guide](https://pytorch.org/).
We provide pre-built mmcv packages (recommended) with different PyTorch and CUDA versions to simplify the building for **Linux and Windows systems**. In addition, you can run [check_installation.py](.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands.
i. Install the latest version.
The rule for installing the latest `mmcv-full` is as follows:
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```
Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example,
to install the latest `mmcv-full` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
```
**Note**: mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well. For example, if your PyTorch version is 1.8.1 and CUDA version is 11.1, you can use the following command to install mmcv-full.
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
```
For more details, please refer the the following tables and delete `=={mmcv_version}`.
ii. Install a specified version.
The rule for installing a specified `mmcv-full` is as follows:
```shell
pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```
First of all, please refer to the Releases and replace `{mmcv_version}` a specified one. e.g. `1.3.9`.
Then replace `{cu_version}` and `{torch_version}` in the url to your desired versions. For example,
to install `mmcv-full==1.3.9` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
```shell
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
```
For more details, please refer the the following tables.
<table class="docutils">
<tbody>
<tr>
<th width="80"> CUDA </th>
<th valign="bottom" align="left" width="120">torch 1.11</th>
<th valign="bottom" align="left" width="120">torch 1.10</th>
<th valign="bottom" align="left" width="120">torch 1.9</th>
<th valign="bottom" align="left" width="120">torch 1.8</th>
<th valign="bottom" align="left" width="120">torch 1.7</th>
<th valign="bottom" align="left" width="120">torch 1.6</th>
<th valign="bottom" align="left" width="120">torch 1.5</th>
</tr>
<tr>
<td align="left">11.5</td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu115/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.3</td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html</code></pre> </details></td>
<td align="left"></td>
<td align="left"></code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.1</td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">11.0</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
<tr>
<td align="left">10.2</td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.10.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code>pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">10.1</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">9.2</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cu92/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
<tr>
<td align="left">cpu</td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.11.0/index.html</code></pre> </details></td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.9.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.8.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.7.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.6.0/index.html</code></pre> </details> </td>
<td align="left"><details><summary> install </summary><pre><code> pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.5.0/index.html</code></pre> </details> </td>
</tr>
</tbody>
</table>
**Note**: The pre-built packages provided above do not include all versions of mmcv-full, you can click on the corresponding links to see the supported versions. For example, you can click [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html) and you can see that `cu102-torch1.8.0` only provides 1.3.0 and above versions of mmcv-full. In addition, We no longer provide `mmcv-full` pre-built packages compiled with `PyTorch 1.3 & 1.4` since v1.3.17. You can find previous versions that compiled with PyTorch 1.3 & 1.4 [here](./docs/en/get_started/previous_versions.md). The compatibility is still ensured in our CI, but we will discard the support of PyTorch 1.3 & 1.4 next year.
**Note**: mmcv-full does not provide pre-built packages for `cu102-torch1.11` and `cu92-torch*` on Windows.
Another way is to compile locally by running
```python
pip install mmcv-full
```
Note that the local compiling may take up to 10 mins.
b. Install the lite version.
```python
pip install mmcv
```
c. Install full version with custom operators for onnxruntime
- Check [here](docs/en/deployment/onnxruntime_op.md) for detailed instruction.
If you would like to build MMCV from source, please refer to the [guide](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
## FAQ
If you face some installation issues, CUDA related issues or RuntimeErrors,
you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html).
## Citation
If you find this project useful in your research, please consider cite:
```latex
@misc{mmcv,
title={{MMCV: OpenMMLab} Computer Vision Foundation},
author={MMCV Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmcv}},
year={2018}
}
```
## Contributing
We appreciate all contributions to improve MMCV. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline.
## License
MMCV is released under the Apache 2.0 license, while some specific operations in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters.
......@@ -88,7 +88,7 @@ __global__ void bbox_overlaps_cuda_kernel(const T* bbox1, const T* bbox2,
}
}
#if __CUDA_ARCH__ >= 530
#if __CUDACC__ >= 530
__device__ __forceinline__ __half __half_area(const __half x1, const __half y1,
const __half x2, const __half y2,
const __half offset) {
......@@ -142,6 +142,6 @@ __device__ void bbox_overlaps_cuda_kernel_half(
ious[index] = __hdiv(interS, baseS);
}
}
#endif // __CUDA_ARCH__ >= 530
#endif // __CUDACC__ >= 530
#endif // BBOX_OVERLAPS_CUDA_KERNEL_CUH
......@@ -15,13 +15,13 @@
#ifdef PARROTS_USE_HALF
#include <cuda_fp16.h>
#endif
#ifdef __CUDA_ARCH__
#ifdef __CUDACC__
#define CUDA_INTRINSIC_FUNC(Expr) Expr
#else
#define CUDA_INTRINSIC_FUNC(Expr)
#endif
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
#if !defined(__CUDACC__) || __CUDACC__ >= 300
#ifdef PARROTS_USE_HALF
......@@ -104,6 +104,6 @@ __device__ inline T __shfl_xor_sync(unsigned mask, T var, int laneMask,
#endif // CUDA_VERSION < 9000
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
#endif // !defined(__CUDACC__) || __CUDACC__ >= 300
#endif // INCLUDE_PARROTS_DARRAY_CUDAWARPFUNCTION_CUH_
......@@ -42,9 +42,9 @@ __device__ __forceinline__ static void reduceAdd(double *address, double val) {
atomicAdd(address, val);
}
#else
#ifdef __CUDA_ARCH__
#ifdef __CUDACC__
__device__ __forceinline__ static void reduceAdd(float *address, float val) {
#if (__CUDA_ARCH__ < 200)
#if (__CUDACC__ < 200)
#ifdef _MSC_VER
#pragma message( \
"compute capability lower than 2.x. fall back to use CAS version of atomicAdd for float32")
......@@ -65,7 +65,7 @@ __device__ __forceinline__ static void reduceAdd(float *address, float val) {
}
__device__ __forceinline__ static void reduceAdd(double *address, double val) {
#if (__CUDA_ARCH__ < 600)
#if (__CUDACC__ < 600)
#ifdef _MSC_VER
#pragma message( \
"compute capability lower than 6.x. fall back to use CAS version of atomicAdd for float64")
......@@ -85,7 +85,7 @@ __device__ __forceinline__ static void reduceAdd(double *address, double val) {
atomicAdd(address, val);
#endif
}
#endif // __CUDA_ARCH__
#endif // __CUDACC__
#endif // HIP_DIFF
template <typename T>
......
......@@ -60,7 +60,7 @@ using phalf = float16;
}()
/** atomicAdd **/
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600
#if defined(__CUDACC__) && __CUDACC__ < 600
static __inline__ __device__ double atomicAdd(double* address, double val) {
unsigned long long int* address_as_ull = (unsigned long long int*)address;
......
......@@ -4,7 +4,7 @@
// Disable fp16 on ROCm device
#ifndef HIP_DIFF
#if __CUDA_ARCH__ >= 530
#if __CUDACC__ >= 530
template <>
__global__ void bbox_overlaps_cuda_kernel<at::Half>(
const at::Half* bbox1, const at::Half* bbox2, at::Half* ious,
......@@ -15,7 +15,7 @@ __global__ void bbox_overlaps_cuda_kernel<at::Half>(
reinterpret_cast<__half*>(ious), num_bbox1,
num_bbox2, mode, aligned, offset);
}
#endif // __CUDA_ARCH__ >= 530
#endif // __CUDACC__ >= 530
#endif // HIP_DIFF
void BBoxOverlapsCUDAKernelLauncher(const Tensor bboxes1, const Tensor bboxes2,
......
......@@ -72,7 +72,7 @@ class Scatter:
streams = None
if input_device == -1 and target_gpus != [-1]:
# Perform CPU to GPU copies in a background stream
streams = [_get_stream(device) for device in target_gpus]
streams = [_get_stream(torch.device("cuda", device)) for device in target_gpus]
outputs = scatter(input, target_gpus, streams)
# Synchronize with the copy stream
......
......@@ -215,8 +215,8 @@ def get_extensions():
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args = {
'nvcc': [cuda_args, '-std=c++14'] if cuda_args else ['-std=c++14'],
'cxx': ['-std=c++14'],
'nvcc': [cuda_args, '-std=c++17'] if cuda_args else ['-std=c++17'],
'cxx': ['-std=c++17'],
}
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
define_macros += [('MMCV_WITH_CUDA', None)]
......@@ -258,14 +258,14 @@ def get_extensions():
extra_compile_args = {'cxx': []}
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
# c++14 features, the argument ['std=c++14'] must be added here.
# c++17 features, the argument ['std=c++17'] must be added here.
# However, in the windows environment, some standard libraries
# will depend on c++17 or higher. In fact, for the windows
# environment, the compiler will choose the appropriate compiler
# to compile those cpp files, so there is no need to add the
# argument
if platform.system() != 'Windows':
extra_compile_args['cxx'] = ['-std=c++14']
extra_compile_args['cxx'] = ['-std=c++17']
include_dirs = []
......@@ -337,14 +337,14 @@ def get_extensions():
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
# c++14 features, the argument ['std=c++14'] must be added here.
# c++17 features, the argument ['std=c++17'] must be added here.
# However, in the windows environment, some standard libraries
# will depend on c++17 or higher. In fact, for the windows
# environment, the compiler will choose the appropriate compiler
# to compile those cpp files, so there is no need to add the
# argument
if 'nvcc' in extra_compile_args and platform.system() != 'Windows':
extra_compile_args['nvcc'] += ['-std=c++14']
extra_compile_args['nvcc'] += ['-std=c++17']
ext_ops = extension(
name=ext_name,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment