"...text-generation-inference.git" did not exist on "ab7ccf5bc3c84e07d0faf0d950421fcdc29743b5"
Unverified Commit 44edcdd9 authored by q.yao's avatar q.yao Committed by GitHub
Browse files

add onnx namespace for custom ops (#1254)

parent 54907a39
...@@ -19,12 +19,12 @@ class CARAFENaiveFunction(Function): ...@@ -19,12 +19,12 @@ class CARAFENaiveFunction(Function):
@staticmethod @staticmethod
def symbolic(g, features, masks, kernel_size, group_size, scale_factor): def symbolic(g, features, masks, kernel_size, group_size, scale_factor):
return g.op( return g.op(
'MMCVCARAFENaive', 'mmcv::MMCVCARAFENaive',
features, features,
masks, masks,
kernel_size=kernel_size, kernel_size_i=kernel_size,
group_size=group_size, group_size_i=group_size,
scale_factor=scale_factor) scale_factor_f=scale_factor)
@staticmethod @staticmethod
def forward(ctx, features, masks, kernel_size, group_size, scale_factor): def forward(ctx, features, masks, kernel_size, group_size, scale_factor):
...@@ -102,12 +102,12 @@ class CARAFEFunction(Function): ...@@ -102,12 +102,12 @@ class CARAFEFunction(Function):
@staticmethod @staticmethod
def symbolic(g, features, masks, kernel_size, group_size, scale_factor): def symbolic(g, features, masks, kernel_size, group_size, scale_factor):
return g.op( return g.op(
'MMCVCARAFE', 'mmcv::MMCVCARAFE',
features, features,
masks, masks,
kernel_size=kernel_size, kernel_size_i=kernel_size,
group_size=group_size, group_size_i=group_size,
scale_factor=scale_factor) scale_factor_f=scale_factor)
@staticmethod @staticmethod
def forward(ctx, features, masks, kernel_size, group_size, scale_factor): def forward(ctx, features, masks, kernel_size, group_size, scale_factor):
......
...@@ -15,7 +15,7 @@ class CAWeightFunction(torch.autograd.Function): ...@@ -15,7 +15,7 @@ class CAWeightFunction(torch.autograd.Function):
@staticmethod @staticmethod
def symbolic(g, t, f): def symbolic(g, t, f):
return g.op('MMCVCAWeight', t, f) return g.op('mmcv::MMCVCAWeight', t, f)
@staticmethod @staticmethod
def forward(ctx, t, f): def forward(ctx, t, f):
...@@ -41,7 +41,7 @@ class CAMapFunction(torch.autograd.Function): ...@@ -41,7 +41,7 @@ class CAMapFunction(torch.autograd.Function):
@staticmethod @staticmethod
def symbolic(g, weight, v): def symbolic(g, weight, v):
return g.op('MMCVCAMap', weight, v) return g.op('mmcv::MMCVCAMap', weight, v)
@staticmethod @staticmethod
def forward(ctx, weight, v): def forward(ctx, weight, v):
......
...@@ -16,15 +16,15 @@ class DeformRoIPoolFunction(Function): ...@@ -16,15 +16,15 @@ class DeformRoIPoolFunction(Function):
def symbolic(g, input, rois, offset, output_size, spatial_scale, def symbolic(g, input, rois, offset, output_size, spatial_scale,
sampling_ratio, gamma): sampling_ratio, gamma):
return g.op( return g.op(
'MMCVDeformRoIPool', 'mmcv::MMCVDeformRoIPool',
input, input,
rois, rois,
offset, offset,
pooled_height=output_size[0], pooled_height_i=output_size[0],
pooled_width=output_size[1], pooled_width_i=output_size[1],
spatial_scale=spatial_scale, spatial_scale_f=spatial_scale,
sampling_ratio=sampling_ratio, sampling_ratio_f=sampling_ratio,
gamma=gamma) gamma_f=gamma)
@staticmethod @staticmethod
def forward(ctx, def forward(ctx,
......
...@@ -17,13 +17,13 @@ class SigmoidFocalLossFunction(Function): ...@@ -17,13 +17,13 @@ class SigmoidFocalLossFunction(Function):
@staticmethod @staticmethod
def symbolic(g, input, target, gamma, alpha, weight, reduction): def symbolic(g, input, target, gamma, alpha, weight, reduction):
return g.op( return g.op(
'MMCVSigmoidFocalLoss', 'mmcv::MMCVSigmoidFocalLoss',
input, input,
target, target,
gamma=gamma, gamma_f=gamma,
alpha=alpha, alpha_f=alpha,
weight=weight, weight_f=weight,
reduction=reduction) reduction_s=reduction)
@staticmethod @staticmethod
def forward(ctx, def forward(ctx,
...@@ -111,13 +111,13 @@ class SoftmaxFocalLossFunction(Function): ...@@ -111,13 +111,13 @@ class SoftmaxFocalLossFunction(Function):
@staticmethod @staticmethod
def symbolic(g, input, target, gamma, alpha, weight, reduction): def symbolic(g, input, target, gamma, alpha, weight, reduction):
return g.op( return g.op(
'MMCVSoftmaxFocalLoss', 'mmcv::MMCVSoftmaxFocalLoss',
input, input,
target, target,
gamma=gamma, gamma_f=gamma,
alpha=alpha, alpha_f=alpha,
weight=weight, weight_f=weight,
reduction=reduction) reduction_s=reduction)
@staticmethod @staticmethod
def forward(ctx, def forward(ctx,
......
...@@ -18,13 +18,13 @@ class MaskedConv2dFunction(Function): ...@@ -18,13 +18,13 @@ class MaskedConv2dFunction(Function):
@staticmethod @staticmethod
def symbolic(g, features, mask, weight, bias, padding, stride): def symbolic(g, features, mask, weight, bias, padding, stride):
return g.op( return g.op(
'MMCVMaskedConv2d', 'mmcv::MMCVMaskedConv2d',
features, features,
mask, mask,
weight, weight,
bias, bias,
padding=padding, padding_i=padding,
stride=stride) stride_i=stride)
@staticmethod @staticmethod
def forward(ctx, features, mask, weight, bias, padding=0, stride=1): def forward(ctx, features, mask, weight, bias, padding=0, stride=1):
......
...@@ -14,7 +14,10 @@ class PSAMaskFunction(Function): ...@@ -14,7 +14,10 @@ class PSAMaskFunction(Function):
@staticmethod @staticmethod
def symbolic(g, input, psa_type, mask_size): def symbolic(g, input, psa_type, mask_size):
return g.op( return g.op(
'MMCVPSAMask', input, psa_type=psa_type, mask_size=mask_size) 'mmcv::MMCVPSAMask',
input,
psa_type_i=psa_type,
mask_size_i=mask_size)
@staticmethod @staticmethod
def forward(ctx, input, psa_type, mask_size): def forward(ctx, input, psa_type, mask_size):
......
...@@ -22,16 +22,16 @@ class SyncBatchNormFunction(Function): ...@@ -22,16 +22,16 @@ class SyncBatchNormFunction(Function):
def symbolic(g, input, running_mean, running_var, weight, bias, momentum, def symbolic(g, input, running_mean, running_var, weight, bias, momentum,
eps, group, group_size): eps, group, group_size):
return g.op( return g.op(
'MMCVSyncBatchNorm', 'mmcv::MMCVSyncBatchNorm',
input, input,
running_mean, running_mean,
running_var, running_var,
weight, weight,
bias, bias,
momentum=momentum, momentum_f=momentum,
eps=eps, eps_f=eps,
group=group, group_i=group,
group_size=group_size) group_size_i=group_size)
@staticmethod @staticmethod
def forward(self, input, running_mean, running_var, weight, bias, momentum, def forward(self, input, running_mean, running_var, weight, bias, momentum,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment