Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMCV
Commits
24f88646
Commit
24f88646
authored
Oct 18, 2022
by
bdf
Committed by
Zaida Zhou
Oct 22, 2022
Browse files
[Feature] Add getJobLimitCapability interface and use it in nms
parent
a8f7ae48
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
59 additions
and
28 deletions
+59
-28
mmcv/ops/csrc/common/pytorch_mlu_helper.hpp
mmcv/ops/csrc/common/pytorch_mlu_helper.hpp
+10
-0
mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp
mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp
+49
-28
No files found.
mmcv/ops/csrc/common/pytorch_mlu_helper.hpp
View file @
24f88646
...
@@ -25,6 +25,16 @@
...
@@ -25,6 +25,16 @@
#define CEIL_ALIGN(x, y) (((x) + (y)-1) / (y) * (y))
#define CEIL_ALIGN(x, y) (((x) + (y)-1) / (y) * (y))
inline
int32_t
getJobLimitCapability
()
{
CNcontext
drv_ctx
;
CNctxConfigParam
ctx_conf_param
;
TORCH_CHECK
(
CN_SUCCESS
==
cnGetCtxConfigParam
(
drv_ctx
,
CN_CTX_CONFIG_UNION_LIMIT
,
&
ctx_conf_param
),
"cnGetCtxConfigParam fails."
);
return
(
int32_t
)
ctx_conf_param
.
unionLimit
;
}
#endif // MMCV_WITH_MLU
#endif // MMCV_WITH_MLU
#endif // PYTORCH_MLU_HELPER_HPP_
#endif // PYTORCH_MLU_HELPER_HPP_
mmcv/ops/csrc/pytorch/mlu/nms_mlu.cpp
View file @
24f88646
...
@@ -16,9 +16,9 @@
...
@@ -16,9 +16,9 @@
void
KernelNms
(
cnrtDim3_t
k_dim
,
cnrtFunctionType_t
k_type
,
cnrtQueue_t
queue
,
void
KernelNms
(
cnrtDim3_t
k_dim
,
cnrtFunctionType_t
k_type
,
cnrtQueue_t
queue
,
const
cnrtDataType_t
data_type_input
,
const
void
*
boxes_ptr
,
const
cnrtDataType_t
data_type_input
,
const
void
*
boxes_ptr
,
const
void
*
scores_ptr
,
const
int
input_num_boxes
,
const
void
*
scores_ptr
,
const
int
input_num_boxes
,
const
int
input_stride
,
const
int
max_output_boxes
,
const
int
max_output_boxes
,
const
float
iou_threshold
,
const
float
iou_threshold
,
const
float
offset
,
const
float
offset
,
void
*
workspace_ptr
,
void
*
output_size_ptr
,
void
*
workspace_ptr
,
void
*
output_size_ptr
,
void
*
output_ptr
);
void
*
output_ptr
);
int
selectUnionType
(
uint32_t
use_job
,
int
box_num_per_core
)
{
int
selectUnionType
(
uint32_t
use_job
,
int
box_num_per_core
)
{
// the box_num_per_core should be at least 256, otherwise the real IO
// the box_num_per_core should be at least 256, otherwise the real IO
...
@@ -30,6 +30,45 @@ int selectUnionType(uint32_t use_job, int box_num_per_core) {
...
@@ -30,6 +30,45 @@ int selectUnionType(uint32_t use_job, int box_num_per_core) {
return
use_job
;
return
use_job
;
}
}
static
cnnlStatus_t
policyFunc
(
cnrtDim3_t
*
k_dim
,
cnrtFunctionType_t
*
k_type
,
int
&
core_num_per_class
,
const
int
input_box_num
)
{
uint32_t
core_dim
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
uint32_t
job_limit
=
getJobLimitCapability
();
uint32_t
core_number
=
job_limit
;
int
box_num_per_core
=
(
input_box_num
+
core_number
-
1
)
/
core_number
;
int
use_job
=
selectUnionType
(
job_limit
,
box_num_per_core
);
// initiate k_type as Union1
k_dim
->
x
=
core_dim
;
k_dim
->
y
=
1
;
k_dim
->
z
=
1
;
*
k_type
=
CNRT_FUNC_TYPE_UNION1
;
switch
(
job_limit
)
{
case
CN_KERNEL_CLASS_BLOCK
:
case
CN_KERNEL_CLASS_UNION
:
case
CN_KERNEL_CLASS_UNION2
:
case
CN_KERNEL_CLASS_UNION4
:
case
CN_KERNEL_CLASS_UNION8
:
case
CN_KERNEL_CLASS_UNION16
:
{
if
(
use_job
<
4
)
{
k_dim
->
x
=
1
;
*
k_type
=
CNRT_FUNC_TYPE_BLOCK
;
}
else
if
(
use_job
==
4
)
{
k_dim
->
x
=
core_dim
;
*
k_type
=
CNRT_FUNC_TYPE_UNION1
;
}
else
{
k_dim
->
x
=
use_job
;
*
k_type
=
(
cnrtFunctionType_t
)
use_job
;
}
};
break
;
default:
LOG
(
WARNING
)
<<
"[cnnlNms_v2]: got unsupported job limit number."
<<
" Use default CN_KERNEL_CLASS_UNION1 with UNION1 task."
;
}
return
CNNL_STATUS_SUCCESS
;
}
Tensor
NMSMLUKernelLauncher
(
Tensor
boxes
,
Tensor
scores
,
float
iou_threshold
,
Tensor
NMSMLUKernelLauncher
(
Tensor
boxes
,
Tensor
scores
,
float
iou_threshold
,
int
offset
)
{
int
offset
)
{
// dimension parameters check
// dimension parameters check
...
@@ -53,33 +92,14 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
...
@@ -53,33 +92,14 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
}
}
int
input_num_boxes
=
boxes
.
size
(
0
);
int
input_num_boxes
=
boxes
.
size
(
0
);
int
input_stride
=
boxes
.
size
(
0
);
int
max_output_boxes
=
boxes
.
size
(
0
);
int
max_output_boxes
=
boxes
.
size
(
0
);
cnrtDataType_t
data_type_input
=
torch_mlu
::
toCnrtDtype
(
boxes
.
dtype
());
cnrtDataType_t
data_type_input
=
torch_mlu
::
toCnrtDtype
(
boxes
.
dtype
());
cnrtDim3_t
k_dim
;
cnrtDim3_t
k_dim
;
cnrtJobType_t
k_type
;
cnrtJobType_t
k_type
;
uint32_t
union_number
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrClusterCount
);
uint32_t
core_dim
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
int
core_num_per_class
;
uint32_t
job_limit
=
union_number
*
core_dim
;
policyFunc
(
&
k_dim
,
&
k_type
,
core_num_per_class
,
input_num_boxes
);
uint32_t
core_number
=
union_number
*
core_dim
;
int
box_num_per_core
=
(
input_num_boxes
+
core_number
-
1
)
/
core_number
;
// initiate k_type as Union1
k_dim
.
x
=
core_dim
;
k_dim
.
y
=
1
;
k_dim
.
z
=
1
;
k_type
=
CNRT_FUNC_TYPE_UNION1
;
int
use_job
=
selectUnionType
(
job_limit
,
box_num_per_core
);
if
(
use_job
<
4
)
{
k_dim
.
x
=
1
;
k_type
=
CNRT_FUNC_TYPE_BLOCK
;
}
else
if
(
use_job
==
4
)
{
k_dim
.
x
=
core_dim
;
k_type
=
CNRT_FUNC_TYPE_UNION1
;
}
else
{
k_dim
.
x
=
use_job
;
k_type
=
(
cnrtFunctionType_t
)
use_job
;
}
// transpose boxes (n, 4) to (4, n) for better performance
// transpose boxes (n, 4) to (4, n) for better performance
auto
boxes_t
=
boxes
.
transpose
(
0
,
1
);
auto
boxes_t
=
boxes
.
transpose
(
0
,
1
);
...
@@ -96,6 +116,7 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
...
@@ -96,6 +116,7 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
}
else
{
}
else
{
space_size
=
input_num_boxes
*
sizeof
(
float
)
*
info_num
+
sizeof
(
float
);
space_size
=
input_num_boxes
*
sizeof
(
float
)
*
info_num
+
sizeof
(
float
);
}
}
auto
workspace
=
at
::
empty
(
space_size
,
boxes
.
options
().
dtype
(
at
::
kByte
));
auto
workspace
=
at
::
empty
(
space_size
,
boxes
.
options
().
dtype
(
at
::
kByte
));
// get compute queue
// get compute queue
...
@@ -112,12 +133,12 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
...
@@ -112,12 +133,12 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
auto
output_size_impl
=
torch_mlu
::
getMluTensorImpl
(
output_size
);
auto
output_size_impl
=
torch_mlu
::
getMluTensorImpl
(
output_size
);
auto
output_size_ptr
=
output_size_impl
->
cnnlMalloc
();
auto
output_size_ptr
=
output_size_impl
->
cnnlMalloc
();
uint32_t
core_dim
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
CNLOG
(
INFO
)
<<
"Launch Kernel MLUUnionX NMS<<<Union"
<<
k_type
/
core_dim
CNLOG
(
INFO
)
<<
"Launch Kernel MLUUnionX NMS<<<Union"
<<
k_type
/
core_dim
<<
", "
<<
k_dim
.
x
<<
", "
<<
k_dim
.
y
<<
", "
<<
k_dim
.
z
<<
">>>"
;
<<
", "
<<
k_dim
.
x
<<
", "
<<
k_dim
.
y
<<
", "
<<
k_dim
.
z
<<
">>>"
;
KernelNms
(
k_dim
,
k_type
,
queue
,
data_type_input
,
boxes_ptr
,
scores_ptr
,
KernelNms
(
k_dim
,
k_type
,
queue
,
data_type_input
,
boxes_ptr
,
scores_ptr
,
input_num_boxes
,
input_stride
,
max_output_boxes
,
iou_threshold
,
input_num_boxes
,
max_output_boxes
,
iou_threshold
,
offset
,
offset
,
workspace_ptr
,
output_size_ptr
,
output_ptr
);
workspace_ptr
,
output_size_ptr
,
output_ptr
);
int
output_num
=
*
static_cast
<
int
*>
(
output_size
.
cpu
().
data_ptr
());
int
output_num
=
*
static_cast
<
int
*>
(
output_size
.
cpu
().
data_ptr
());
return
output
.
slice
(
0
,
0
,
output_num
);
return
output
.
slice
(
0
,
0
,
output_num
);
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment