test_parallel.py 6.24 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
limm's avatar
limm committed
2
3
from unittest.mock import MagicMock, patch

limm's avatar
limm committed
4
import pytest
limm's avatar
limm committed
5
6
7
8
9
10
import torch
import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel

from mmcv.parallel import (MODULE_WRAPPERS, MMDataParallel,
                           MMDistributedDataParallel, is_module_wrapper)
limm's avatar
limm committed
11
from mmcv.parallel._functions import Scatter, get_input_device, scatter
limm's avatar
limm committed
12
13
from mmcv.parallel.distributed_deprecated import \
    MMDistributedDataParallel as DeprecatedMMDDP
limm's avatar
limm committed
14
from mmcv.utils import Registry
limm's avatar
limm committed
15
16
17
18
19
20


def mock(*args, **kwargs):
    pass


limm's avatar
limm committed
21
22
@pytest.mark.skipif(
    torch.__version__ == 'parrots', reason='not supported in parrots now')
limm's avatar
limm committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
@patch('torch.distributed._broadcast_coalesced', mock)
@patch('torch.distributed.broadcast', mock)
@patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock)
def test_is_module_wrapper():

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(2, 2, 1)

        def forward(self, x):
            return self.conv(x)

limm's avatar
limm committed
37
38
39
40
41
    # _verify_model_across_ranks is added in torch1.9.0,
    # _verify_params_across_processes is added in torch1.11.0,
    # so we should check whether _verify_model_across_ranks
    # and _verify_params_across_processes are the member of
    # torch.distributed before mocking
limm's avatar
limm committed
42
43
    if hasattr(torch.distributed, '_verify_model_across_ranks'):
        torch.distributed._verify_model_across_ranks = mock
limm's avatar
limm committed
44
45
    if hasattr(torch.distributed, '_verify_params_across_processes'):
        torch.distributed._verify_params_across_processes = mock
limm's avatar
limm committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

    model = Model()
    assert not is_module_wrapper(model)

    dp = DataParallel(model)
    assert is_module_wrapper(dp)

    mmdp = MMDataParallel(model)
    assert is_module_wrapper(mmdp)

    ddp = DistributedDataParallel(model, process_group=MagicMock())
    assert is_module_wrapper(ddp)

    mmddp = MMDistributedDataParallel(model, process_group=MagicMock())
    assert is_module_wrapper(mmddp)

    deprecated_mmddp = DeprecatedMMDDP(model)
    assert is_module_wrapper(deprecated_mmddp)

    # test module wrapper registry
    @MODULE_WRAPPERS.register_module()
limm's avatar
limm committed
67
    class ModuleWrapper:
limm's avatar
limm committed
68
69
70
71
72
73
74
75
76

        def __init__(self, module):
            self.module = module

        def forward(self, *args, **kwargs):
            return self.module(*args, **kwargs)

    module_wraper = ModuleWrapper(model)
    assert is_module_wrapper(module_wraper)
limm's avatar
limm committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    # test module wrapper registry in downstream repo
    MMRAZOR_MODULE_WRAPPERS = Registry(
        'mmrazor module wrapper', parent=MODULE_WRAPPERS, scope='mmrazor')
    MMPOSE_MODULE_WRAPPERS = Registry(
        'mmpose module wrapper', parent=MODULE_WRAPPERS, scope='mmpose')

    @MMRAZOR_MODULE_WRAPPERS.register_module()
    class ModuleWrapperInRazor:

        def __init__(self, module):
            self.module = module

        def forward(self, *args, **kwargs):
            return self.module(*args, **kwargs)

    @MMPOSE_MODULE_WRAPPERS.register_module()
    class ModuleWrapperInPose:

        def __init__(self, module):
            self.module = module

        def forward(self, *args, **kwargs):
            return self.module(*args, **kwargs)

    wrapped_module = ModuleWrapperInRazor(model)
    assert is_module_wrapper(wrapped_module)

    wrapped_module = ModuleWrapperInPose(model)
    assert is_module_wrapper(wrapped_module)


def test_get_input_device():
    # if the device is CPU, return -1
    input = torch.zeros([1, 3, 3, 3])
    assert get_input_device(input) == -1
    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    assert get_input_device(inputs) == -1

    # if the device is GPU, return the index of device
    if torch.cuda.is_available():
        input = torch.zeros([1, 3, 3, 3]).cuda()
        assert get_input_device(input) == 0
        inputs = [
            torch.zeros([1, 3, 3, 3]).cuda(),
            torch.zeros([1, 4, 4, 4]).cuda()
        ]
        assert get_input_device(inputs) == 0

    # input should be a tensor or list of tensor
    with pytest.raises(Exception):
        get_input_device(5)


def test_scatter():
    # if the device is CPU, just return the input
    input = torch.zeros([1, 3, 3, 3])
    output = scatter(input=input, devices=[-1])
    assert torch.allclose(input, output)

    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    outputs = scatter(input=inputs, devices=[-1])
    for input, output in zip(inputs, outputs):
        assert torch.allclose(input, output)

    # if the device is GPU, copy the input from CPU to GPU
    if torch.cuda.is_available():
        input = torch.zeros([1, 3, 3, 3])
        output = scatter(input=input, devices=[0])
        assert torch.allclose(input.cuda(), output)

        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
        outputs = scatter(input=inputs, devices=[0])
        for input, output in zip(inputs, outputs):
            assert torch.allclose(input.cuda(), output)

    # input should be a tensor or list of tensor
    with pytest.raises(Exception):
        scatter(5, [-1])


@pytest.mark.skipif(
    torch.__version__ == 'parrots', reason='not supported in parrots now')
def test_Scatter():
    # if the device is CPU, just return the input
    target_gpus = [-1]
    input = torch.zeros([1, 3, 3, 3])
    outputs = Scatter.forward(target_gpus, input)
    assert isinstance(outputs, tuple)
    assert torch.allclose(input, outputs[0])

    target_gpus = [-1]
    inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
    outputs = Scatter.forward(target_gpus, inputs)
    assert isinstance(outputs, tuple)
    for input, output in zip(inputs, outputs):
        assert torch.allclose(input, output)

    # if the device is GPU, copy the input from CPU to GPU
    if torch.cuda.is_available():
        target_gpus = [0]
        input = torch.zeros([1, 3, 3, 3])
        outputs = Scatter.forward(target_gpus, input)
        assert isinstance(outputs, tuple)
        assert torch.allclose(input.cuda(), outputs[0])

        target_gpus = [0]
        inputs = [torch.zeros([1, 3, 3, 3]), torch.zeros([1, 4, 4, 4])]
        outputs = Scatter.forward(target_gpus, inputs)
        assert isinstance(outputs, tuple)
        for input, output in zip(inputs, outputs):
            assert torch.allclose(input.cuda(), output[0])