test_tin_shift.py 9.87 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
Jintao Lin's avatar
Jintao Lin committed
2
3
4
5
6
7
import os

import numpy as np
import pytest
import torch

limm's avatar
limm committed
8
9
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE

Jintao Lin's avatar
Jintao Lin committed
10
11
12
13
14
15
16
17
18
19
_USING_PARROTS = True
try:
    from parrots.autograd import gradcheck
except ImportError:
    from torch.autograd import gradcheck

    _USING_PARROTS = False

cur_dir = os.path.dirname(os.path.abspath(__file__))

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
inputs = ([[[[0.88572276, 0.46422583], [0.97408265, 0.59547687],
             [0.030812204, 0.96236038], [0.75418317, 0.44058233],
             [0.33279222, 0.00084149837], [0.7069388, 0.23255438],
             [0.13547045, 0.81549376], [0.40174931, 0.36317211]],
            [[0.57444429, 0.15905505], [0.39897251, 0.25790238],
             [0.93282568, 0.18451685], [0.92526674, 0.18283755],
             [0.31664443, 0.59323865], [0.1957739, 0.42505842],
             [0.081158757, 0.81340349], [0.43456328, 0.30195212]],
            [[0.8198145, 0.05990988], [0.98062474, 0.34803438],
             [0.10412294, 0.37183142], [0.15021622, 0.038857818],
             [0.40985721, 0.42253625], [0.71150124, 0.59778064],
             [0.83851069, 0.15194464], [0.097513378, 0.74820143]],
            [[0.80680406, 0.49327564], [0.17821097, 0.12980539],
             [0.50657678, 0.14446253], [0.04178369, 0.53071898],
             [0.84983683, 0.3826949], [0.32193625, 0.91275406],
             [0.75628334, 0.52934098], [0.27994192, 0.3053292]]],
           [[[0.082397044, 0.4210068], [0.23563534, 0.7938987],
             [0.63669145, 0.69397897], [0.8844561, 0.97854084],
             [0.79027033, 0.60640401], [0.63528901, 0.72172403],
             [0.0097346902, 0.70800996], [0.87891227, 0.13674974]],
            [[0.74329448, 0.0243572], [0.82178867, 0.85750699],
             [0.7568835, 0.73146772], [0.5031184, 0.30479157],
             [0.28713053, 0.47414285], [0.4682079, 0.067471564],
             [0.48368263, 0.14590704], [0.25397325, 0.19946373]],
            [[0.4291026, 0.068739474], [0.7159555, 0.79903615],
             [0.76412082, 0.85348046], [0.081224024, 0.82264912],
             [0.97173303, 0.24291694], [0.48957139, 0.43488795],
             [0.67382395, 0.21889746], [0.36712623, 0.67127824]],
            [[0.12054044, 0.18096751], [0.86675781, 0.54755616],
             [0.68208277, 0.15164375], [0.79991871, 0.80811197],
             [0.85256428, 0.68253738], [0.185983, 0.95642138],
             [0.48102546, 0.28009653], [0.35726011, 0.58168036]]]])
Jintao Lin's avatar
Jintao Lin committed
52
53
54

shifts = [([[1, 0, 1, -2], [-2, 1, -1, 1]]), ([[2, 1, 2, -1], [-1, 2, 0, 2]])]

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
outputs = [([[[[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
               [0.75628, 0.52934], [0.27994, 0.30533]],
              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
               [0.0, 0.0], [0.0, 0.0]],
              [[0.81981, 0.05991], [0.98062, 0.34803], [0.50658, 0.14446],
               [0.041784, 0.53072], [0.40986, 0.42254], [0.7115, 0.59778],
               [0.0, 0.0], [0.0, 0.0]]],
             [[[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
                                                                     0.0]],
              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
               [0.0097347, 0.70801], [0.87891, 0.13675]],
              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
               [0.25397, 0.19946]],
              [[0.0, 0.0], [0.0, 0.0], [0.76412, 0.85348], [0.081224, 0.82265],
               [0.0, 0.0], [0.0, 0.0], [0.67382, 0.2189], [0.36713,
                                                           0.67128]]]]),
           ([[[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
               [0.0, 0.0], [0.081159, 0.8134], [0.43456, 0.30195]],
              [[0.0, 0.0], [0.0, 0.0], [0.030812, 0.96236], [0.75418, 0.44058],
               [0.0, 0.0], [0.0, 0.0], [0.83851, 0.15194], [0.097513, 0.7482]],
              [[0.88572, 0.46423], [0.97408, 0.59548], [0.93283, 0.18452],
               [0.92527, 0.18284], [0.33279, 0.0008415], [0.70694, 0.23255],
               [0.75628, 0.52934], [0.27994, 0.30533]],
              [[0.57444, 0.15906], [0.39897, 0.2579], [0.10412, 0.37183],
               [0.15022, 0.038858], [0.31664, 0.59324], [0.19577, 0.42506],
               [0.0, 0.0], [0.0, 0.0]]],
             [[[0.74329, 0.024357], [0.82179, 0.85751], [0.0, 0.0], [0.0, 0.0],
               [0.79027, 0.6064], [0.63529, 0.72172], [0.0, 0.0], [0.0, 0.0]],
              [[0.4291, 0.068739], [0.71596, 0.79904], [0.0, 0.0], [0.0, 0.0],
               [0.28713, 0.47414], [0.46821, 0.067472], [0.0, 0.0], [0.0,
                                                                     0.0]],
              [[0.12054, 0.18097], [0.86676, 0.54756], [0.63669, 0.69398],
               [0.88446, 0.97854], [0.97173, 0.24292], [0.48957, 0.43489],
               [0.0097347, 0.70801], [0.87891, 0.13675]],
              [[0.0, 0.0], [0.0, 0.0], [0.75688, 0.73147], [0.50312, 0.30479],
               [0.85256, 0.68254], [0.18598, 0.95642], [0.48368, 0.14591],
               [0.25397, 0.19946]]]])]

grads = [
    [[[[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]]],
     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]]]],
    [[[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]]],
     [[[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [0., 0.], [0., 0.], [1., 1.], [1., 1.], [0., 0.],
       [0., 0.]],
      [[1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]],
      [[0., 0.], [0., 0.], [1., 1.], [1., 1.], [1., 1.], [1., 1.], [1., 1.],
       [1., 1.]]]]
]
Jintao Lin's avatar
Jintao Lin committed
134
135


limm's avatar
limm committed
136
def _test_tinshift_gradcheck(device, dtype):
Jintao Lin's avatar
Jintao Lin committed
137
138
139
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
140
        pytest.skip('TINShift op is not successfully compiled')
Jintao Lin's avatar
Jintao Lin committed
141
142
143
144
145
146
147
148
149

    if dtype == torch.half:
        pytest.skip('"add_cpu/sub_cpu" not implemented for Half')

    for shift in shifts:
        np_input = np.array(inputs)
        np_shift = np.array(shift)

        x = torch.tensor(
limm's avatar
limm committed
150
151
            np_input, dtype=dtype, device=device, requires_grad=True)
        shift = torch.tensor(np_shift, device=device).int()
Jintao Lin's avatar
Jintao Lin committed
152
153
154
155
156
157
        if torch.__version__ == 'parrots':
            gradcheck(tin_shift, (x, shift))
        else:
            gradcheck(tin_shift, (x, shift), atol=1, rtol=0.1)


limm's avatar
limm committed
158
def _test_tinshift_allclose(device, dtype):
Jintao Lin's avatar
Jintao Lin committed
159
160
161
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
162
        pytest.skip('TINShift op is not successfully compiled')
Jintao Lin's avatar
Jintao Lin committed
163
164
165
166
167
168
169
170

    for shift, output, grad in zip(shifts, outputs, grads):
        np_input = np.array(inputs)
        np_shift = np.array(shift)
        np_output = np.array(output)
        np_grad = np.array(grad)

        x = torch.tensor(
limm's avatar
limm committed
171
172
            np_input, dtype=dtype, device=device, requires_grad=True)
        shift = torch.tensor(np_shift, device=device).int()
Jintao Lin's avatar
Jintao Lin committed
173
174
175
176
177
178
179
180
181

        output = tin_shift(x, shift)
        output.backward(torch.ones_like(output))
        assert np.allclose(
            output.data.type(torch.float).cpu().numpy(), np_output, 1e-3)
        assert np.allclose(
            x.grad.data.type(torch.float).cpu().numpy(), np_grad, 1e-3)


limm's avatar
limm committed
182
def _test_tinshift_assert(device, dtype):
183
184
185
186
187
    try:
        from mmcv.ops import tin_shift
    except ModuleNotFoundError:
        pytest.skip('TINShift op is not successfully compiled')

limm's avatar
limm committed
188
189
190
191
192
    inputs = [
        torch.rand(2, 3, 4, 2),
        torch.rand(2, 3, 4, 2),
        torch.rand(1, 3, 4, 2)
    ]
193
194
195
    shifts = [torch.rand(2, 3), torch.rand(2, 5)]

    for x, shift in zip(inputs, shifts):
limm's avatar
limm committed
196
197
        x = x.to(device).type(dtype)
        shift = shift.to(device).type(dtype)
198
199
200
201
202
203

        # A ValueError should be raised if ops get inputs with wrong shapes.
        with pytest.raises(ValueError):
            tin_shift(x, shift)


limm's avatar
limm committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
@pytest.mark.parametrize('device', [
    pytest.param(
        'cuda',
        marks=pytest.mark.skipif(
            not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
    pytest.param(
        'mlu',
        marks=pytest.mark.skipif(
            not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
@pytest.mark.parametrize('dtype', [
    torch.float,
    pytest.param(
        torch.double,
        marks=pytest.mark.skipif(
            IS_MLU_AVAILABLE,
            reason='MLU does not support for 64-bit floating point')),
    torch.half
])
def test_tinshift(device, dtype):
    _test_tinshift_allclose(device=device, dtype=dtype)
    _test_tinshift_gradcheck(device=device, dtype=dtype)
    _test_tinshift_assert(device=device, dtype=dtype)