test_three_nn.py 3.63 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
import pytest
import torch

from mmcv.ops import three_nn

7

limm's avatar
limm committed
8
9
10
11
12
13
14
15
16
17
18
19
20
@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_three_nn():
    known = torch.tensor([[[-1.8373, 3.5605,
                            -0.7867], [0.7615, 2.9420, 0.2314],
                           [-0.6503, 3.6637, -1.0622],
                           [-1.8373, 3.5605, -0.7867],
                           [-1.8373, 3.5605, -0.7867]],
                          [[-1.3399, 1.9991, -0.3698],
                           [-0.0799, 0.9698,
                            -0.8457], [0.0858, 2.4721, -0.1928],
                           [-1.3399, 1.9991, -0.3698],
                           [-1.3399, 1.9991, -0.3698]]]).cuda()
21

limm's avatar
limm committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    unknown = torch.tensor([[[-1.8373, 3.5605, -0.7867],
                             [0.7615, 2.9420, 0.2314],
                             [-0.6503, 3.6637, -1.0622],
                             [-1.5237, 2.3976, -0.8097],
                             [-0.0722, 3.4017, -0.2880],
                             [0.5198, 3.0661, -0.4605],
                             [-2.0185, 3.5019, -0.3236],
                             [0.5098, 3.1020, 0.5799],
                             [-1.6137, 3.8443, -0.5269],
                             [0.7341, 2.9626, -0.3189]],
                            [[-1.3399, 1.9991, -0.3698],
                             [-0.0799, 0.9698, -0.8457],
                             [0.0858, 2.4721, -0.1928],
                             [-0.9022, 1.6560, -1.3090],
                             [0.1156, 1.6901, -0.4366],
                             [-0.6477, 2.3576, -0.1563],
                             [-0.8482, 1.1466, -1.2704],
                             [-0.8753, 2.0845, -0.3460],
                             [-0.5621, 1.4233, -1.2858],
                             [-0.5883, 1.3114, -1.2899]]]).cuda()
42

limm's avatar
limm committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    dist, idx = three_nn(unknown, known)
    expected_dist = torch.tensor([[[0.0000, 0.0000, 0.0000],
                                   [0.0000, 2.0463, 2.8588],
                                   [0.0000, 1.2229, 1.2229],
                                   [1.2047, 1.2047, 1.2047],
                                   [1.0011, 1.0845, 1.8411],
                                   [0.7433, 1.4451, 2.4304],
                                   [0.5007, 0.5007, 0.5007],
                                   [0.4587, 2.0875, 2.7544],
                                   [0.4450, 0.4450, 0.4450],
                                   [0.5514, 1.7206, 2.6811]],
                                  [[0.0000, 0.0000, 0.0000],
                                   [0.0000, 1.6464, 1.6952],
                                   [0.0000, 1.5125, 1.5125],
                                   [1.0915, 1.0915, 1.0915],
                                   [0.8197, 0.8511, 1.4894],
                                   [0.7433, 0.8082, 0.8082],
                                   [0.8955, 1.3340, 1.3340],
                                   [0.4730, 0.4730, 0.4730],
                                   [0.7949, 1.3325, 1.3325],
                                   [0.7566, 1.3727, 1.3727]]]).cuda()
    expected_idx = torch.tensor([[[0, 3, 4], [1, 2, 0], [2, 0, 3], [0, 3, 4],
                                  [2, 1, 0], [1, 2, 0], [0, 3, 4], [1, 2, 0],
                                  [0, 3, 4], [1, 2, 0]],
                                 [[0, 3, 4], [1, 2, 0], [2, 0, 3], [0, 3, 4],
                                  [2, 1, 0], [2, 0, 3], [1, 0, 3], [0, 3, 4],
                                  [1, 0, 3], [1, 0, 3]]]).cuda()
70

limm's avatar
limm committed
71
72
    assert torch.allclose(dist, expected_dist, 1e-4)
    assert torch.all(idx == expected_idx)