test_scatter_points.py 5.46 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
7
import pytest
import torch
from torch.autograd import gradcheck

from mmcv.ops import DynamicScatter

limm's avatar
limm committed
8
9
10
if torch.__version__ == 'parrots':
    pytest.skip('not supported in parrots now', allow_module_level=True)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_dynamic_scatter():
    dsmean = DynamicScatter([0.32, 0.32, 6],
                            [-74.88, -74.88, -2, 74.88, 74.88, 4], True)
    dsmax = DynamicScatter([0.32, 0.32, 6],
                           [-74.88, -74.88, -2, 74.88, 74.88, 4], False)

    # test empty input
    empty_feats = torch.empty(size=(0, 3), dtype=torch.float32, device='cuda')
    empty_coors = torch.empty(size=(0, 3), dtype=torch.int32, device='cuda')

    empty_feats.requires_grad_()
    empty_feats_out_mean, empty_coors_out_mean = dsmean(
        empty_feats, empty_coors)
    empty_feats_out_mean.sum().backward()
    empty_feats_out_max, empty_coors_out_max = dsmax(empty_feats, empty_coors)
    empty_feats_out_max.sum().backward()

    assert empty_feats_out_mean.shape == empty_feats.shape
    assert empty_feats_out_max.shape == empty_feats.shape
    assert empty_coors_out_mean.shape == empty_coors.shape
    assert empty_coors_out_max.shape == empty_coors.shape

    # test empty reduced output
    empty_o_feats = torch.rand(
        size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50
    empty_o_coors = torch.randint(
        low=-1, high=0, size=(200000, 3), dtype=torch.int32, device='cuda')

    empty_o_feats.requires_grad_()
    empty_o_feats_out_mean, empty_o_coors_out_mean = dsmean(
        empty_o_feats, empty_o_coors)
    empty_o_feats_out_mean.sum().backward()
    assert (empty_o_feats.grad == 0).all()

    empty_o_feats_out_max, empty_o_coors_out_max = dsmax(
        empty_o_feats, empty_o_coors)
    empty_o_feats_out_max.sum().backward()
    assert (empty_o_feats.grad == 0).all()

    # test non-empty input
limm's avatar
limm committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    feats = torch.rand(
        size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50
    coors = torch.randint(
        low=-1, high=20, size=(200000, 3), dtype=torch.int32, device='cuda')

    ref_voxel_coors = coors.unique(dim=0, sorted=True)
    ref_voxel_coors = ref_voxel_coors[ref_voxel_coors.min(dim=-1).values >= 0]
    ref_voxel_feats_mean = []
    ref_voxel_feats_max = []
    for ref_voxel_coor in ref_voxel_coors:
        voxel_mask = (coors == ref_voxel_coor).all(dim=-1)
        ref_voxel_feats_mean.append(feats[voxel_mask].mean(dim=0))
        ref_voxel_feats_max.append(feats[voxel_mask].max(dim=0).values)
    ref_voxel_feats_mean = torch.stack(ref_voxel_feats_mean)
    ref_voxel_feats_max = torch.stack(ref_voxel_feats_max)

    feats_out_mean, coors_out_mean = dsmean(feats, coors)
    seq_mean = (coors_out_mean[:, 0] * 400 + coors_out_mean[:, 1] * 20 +
                coors_out_mean[:, 2]).argsort()
    feats_out_mean = feats_out_mean[seq_mean]
    coors_out_mean = coors_out_mean[seq_mean]

    feats_out_max, coors_out_max = dsmax(feats, coors)
    seq_max = (coors_out_max[:, 0] * 400 + coors_out_max[:, 1] * 20 +
               coors_out_max[:, 2]).argsort()
    feats_out_max = feats_out_max[seq_max]
    coors_cout_max = coors_out_max[seq_max]

    assert (coors_out_mean == ref_voxel_coors).all()
    assert torch.allclose(
        feats_out_mean, ref_voxel_feats_mean, atol=1e-2, rtol=1e-5)
    assert (coors_cout_max == ref_voxel_coors).all()
    assert torch.allclose(
        feats_out_max, ref_voxel_feats_max, atol=1e-2, rtol=1e-5)

    # test non-empty input without any point out of bound
    feats = torch.rand(
        size=(200000, 3), dtype=torch.float32, device='cuda') * 100 - 50
    coors = torch.randint(
        low=0, high=20, size=(200000, 3), dtype=torch.int32, device='cuda')

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    ref_voxel_coors = coors.unique(dim=0, sorted=True)
    ref_voxel_coors = ref_voxel_coors[ref_voxel_coors.min(dim=-1).values >= 0]
    ref_voxel_feats_mean = []
    ref_voxel_feats_max = []
    for ref_voxel_coor in ref_voxel_coors:
        voxel_mask = (coors == ref_voxel_coor).all(dim=-1)
        ref_voxel_feats_mean.append(feats[voxel_mask].mean(dim=0))
        ref_voxel_feats_max.append(feats[voxel_mask].max(dim=0).values)
    ref_voxel_feats_mean = torch.stack(ref_voxel_feats_mean)
    ref_voxel_feats_max = torch.stack(ref_voxel_feats_max)

    feats_out_mean, coors_out_mean = dsmean(feats, coors)
    seq_mean = (coors_out_mean[:, 0] * 400 + coors_out_mean[:, 1] * 20 +
                coors_out_mean[:, 2]).argsort()
    feats_out_mean = feats_out_mean[seq_mean]
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    coors_out_mean = coors_out_mean[seq_mean]

    feats_out_max, coors_out_max = dsmax(feats, coors)
    seq_max = (coors_out_max[:, 0] * 400 + coors_out_max[:, 1] * 20 +
               coors_out_max[:, 2]).argsort()
    feats_out_max = feats_out_max[seq_max]
    coors_cout_max = coors_out_max[seq_max]

    assert (coors_out_mean == ref_voxel_coors).all()
    assert torch.allclose(
        feats_out_mean, ref_voxel_feats_mean, atol=1e-2, rtol=1e-5)
    assert (coors_cout_max == ref_voxel_coors).all()
    assert torch.allclose(
        feats_out_max, ref_voxel_feats_max, atol=1e-2, rtol=1e-5)

    # test grad #
    feats = torch.rand(
        size=(100, 4), dtype=torch.float32, device='cuda') * 100 - 50
    coors = torch.randint(
        low=-1, high=3, size=(100, 3), dtype=torch.int32, device='cuda')
    feats.requires_grad_()
    gradcheck(dsmean, (feats, coors), eps=1e-2, atol=1e-2, rtol=1e-5)
    gradcheck(dsmax, (feats, coors), eps=1e-2, atol=1e-2, rtol=1e-5)