test_onnx.py 33.7 KB
Newer Older
limm's avatar
limm committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import os
limm's avatar
limm committed
3
4
import warnings
from functools import partial
5
6
7

import numpy as np
import onnx
limm's avatar
limm committed
8
import onnxruntime as rt
9
import pytest
10
11
import torch
import torch.nn as nn
limm's avatar
limm committed
12
import torch.nn.functional as F
limm's avatar
limm committed
13
from packaging import version
14
15

onnx_file = 'tmp.onnx'
limm's avatar
limm committed
16
17
if torch.__version__ == 'parrots':
    pytest.skip('not supported in parrots now', allow_module_level=True)
18
19


20
21
22
23
24
25
26
27
28
29
30
31
32
@pytest.fixture(autouse=True)
def run_before_and_after_test():
    # clear onnx_file before test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)

    yield

    # clear onnx_file after test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)


33
34
35
class WrapFunction(nn.Module):

    def __init__(self, wrapped_function):
limm's avatar
limm committed
36
        super().__init__()
37
38
39
40
41
42
        self.wrapped_function = wrapped_function

    def forward(self, *args, **kwargs):
        return self.wrapped_function(*args, **kwargs)


limm's avatar
limm committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def process_grid_sample(func, input, grid, ort_custom_op_path=''):
    wrapped_model = WrapFunction(func).eval()

    input_names = ['input', 'grid']
    output_names = ['output']

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (input, grid),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=input_names,
            output_names=output_names,
            opset_version=11)

    onnx_model = onnx.load(onnx_file)

    session_options = rt.SessionOptions()
    if ort_custom_op_path:
        session_options.register_custom_ops_library(ort_custom_op_path)

    # get onnx output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
    sess = rt.InferenceSession(onnx_file, session_options)
    ort_result = sess.run(None, {
        'input': input.detach().numpy(),
        'grid': grid.detach().numpy()
    })
    pytorch_results = wrapped_model(input.clone(), grid.clone())
    assert np.allclose(pytorch_results, ort_result, atol=1e-3)


@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])
def test_grid_sample(mode, padding_mode, align_corners):
    from mmcv.onnx.symbolic import register_extra_symbolics
    opset_version = 11
    register_extra_symbolics(opset_version)

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    input = torch.rand(1, 1, 10, 10)
    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
limm's avatar
limm committed
94
95
    grid = F.affine_grid(
        grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
limm's avatar
limm committed
96
97

    def func(input, grid):
limm's avatar
limm committed
98
        return F.grid_sample(
limm's avatar
limm committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            input,
            grid,
            mode=mode,
            padding_mode=padding_mode,
            align_corners=align_corners)

    return process_grid_sample(func, input, grid, ort_custom_op_path)


@pytest.mark.parametrize('align_corners', [True, False])
def test_bilinear_grid_sample(align_corners):
    from mmcv.ops.point_sample import bilinear_grid_sample

    # only support pytorch >= 1.5.0
    if version.parse(torch.__version__) < version.parse('1.5.0'):
        pytest.skip('Only support PyTorch >= 1.5.0')

    input = torch.rand(1, 1, 10, 10)
    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
limm's avatar
limm committed
118
119
    grid = F.affine_grid(
        grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
limm's avatar
limm committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def func(input, grid):
        return bilinear_grid_sample(input, grid, align_corners=align_corners)

    return process_grid_sample(func, input, grid)


def test_nms():
    from mmcv.ops import get_onnxruntime_op_path, nms
    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                        dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)

    nms = partial(
        nms, iou_threshold=0.3, offset=0, score_threshold=0, max_num=0)
    pytorch_dets, _ = nms(boxes, scores)
    pytorch_score = pytorch_dets[:, 4]

    wrapped_model = WrapFunction(nms)
    wrapped_model.cpu().eval()
    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (boxes, scores),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['boxes', 'scores'],
            opset_version=11)

    onnx_model = onnx.load(onnx_file)
    ort_custom_op_path = get_onnxruntime_op_path()
    session_options = rt.SessionOptions()
    if os.path.exists(ort_custom_op_path):
        session_options.register_custom_ops_library(ort_custom_op_path)

    # get onnx output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
    sess = rt.InferenceSession(onnx_file, session_options)
    onnx_dets, _ = sess.run(None, {
        'scores': scores.detach().numpy(),
        'boxes': boxes.detach().numpy()
    })
    onnx_score = onnx_dets[:, 4]
    assert np.allclose(pytorch_score, onnx_score, atol=1e-3)


@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
def test_softnms():
    from mmcv.ops import get_onnxruntime_op_path, soft_nms

    # only support pytorch >= 1.7.0
    if version.parse(torch.__version__) < version.parse('1.7.0'):
        warnings.warn('test_softnms should be ran with pytorch >= 1.7.0')
        return

    # only support onnxruntime >= 1.5.1
    assert version.parse(rt.__version__) >= version.parse(
        '1.5.1'), 'test_softnms should be ran with onnxruntime >= 1.5.1'

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('softnms for onnxruntime is not compiled.')

    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                        dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)

    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)

    configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
               [0.3, 0.5, 0.01, 'naive']]

    session_options = rt.SessionOptions()
    session_options.register_custom_ops_library(ort_custom_op_path)

    for _iou_threshold, _sigma, _min_score, _method in configs:
        pytorch_dets, pytorch_inds = soft_nms(
            boxes,
            scores,
            iou_threshold=_iou_threshold,
            sigma=_sigma,
            min_score=_min_score,
            method=_method)
        nms = partial(
            soft_nms,
            iou_threshold=_iou_threshold,
            sigma=_sigma,
            min_score=_min_score,
            method=_method)

        wrapped_model = WrapFunction(nms)
        wrapped_model.cpu().eval()
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (boxes, scores),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['boxes', 'scores'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_dets, onnx_inds = sess.run(None, {
            'scores': scores.detach().numpy(),
            'boxes': boxes.detach().numpy()
        })

        assert np.allclose(pytorch_dets, onnx_dets, atol=1e-3)
        assert np.allclose(onnx_inds, onnx_inds, atol=1e-3)


247
def test_roialign():
248
    try:
limm's avatar
limm committed
249
        from mmcv.ops import get_onnxruntime_op_path, roi_align
250
251
252
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align op is not successfully compiled')

limm's avatar
limm committed
253
    ort_custom_op_path = get_onnxruntime_op_path()
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align(torch_input, torch_rois, (pool_w, pool_h),
                         spatial_scale, sampling_ratio, 'avg', True)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align(input, rois, (pool_w, pool_h),
                                       spatial_scale, sampling_ratio, 'avg',
                                       True)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
292

293
        onnx_model = onnx.load(onnx_file)
294
        session_options = rt.SessionOptions()
limm's avatar
limm committed
295
296
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)
297
298
299
300
301
302
303
304

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
limm's avatar
limm committed
305
        sess = rt.InferenceSession(onnx_file, session_options)
306
307
308
309
310
311
312
        onnx_output = sess.run(None, {
            'input': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose
313

314
315
316
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


limm's avatar
limm committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def test_roialign_rotated():
    try:
        from mmcv.ops import get_onnxruntime_op_path, roi_align_rotated
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align_aligned op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
              ([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
              ([[[[1., 2.], [3., 4.]],
                 [[4., 3.], [2., 1.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3., 0]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3.,
                                             np.pi / 2]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align_rotated(torch_input, torch_rois, (pool_w, pool_h),
                                 spatial_scale, sampling_ratio, True, False)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align_rotated(input, rois, (pool_w, pool_h),
                                               spatial_scale, sampling_ratio,
                                               True, False)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['features', 'rois'],
                opset_version=11)

        onnx_model = onnx.load(onnx_file)
        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_output = sess.run(None, {
            'features': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose

        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


393
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def test_roipool():
    from mmcv.ops import roi_pool

    # roi pool config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_pool(torch_input, torch_rois, (pool_w, pool_h),
                        spatial_scale)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input).cuda()
        rois = torch.from_numpy(np_rois).cuda()

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_pool(input, rois, (pool_w, pool_h),
                                      spatial_scale)
            pytorch_output = pytorch_output.cpu()

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
limm's avatar
limm committed
443
        sess = rt.InferenceSession(onnx_file)
444
445
446
447
448
449
450
451
452
        onnx_output = sess.run(
            None, {
                'input': input.detach().cpu().numpy(),
                'rois': rois.detach().cpu().numpy()
            })
        onnx_output = onnx_output[0]

        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
453
454


limm's avatar
limm committed
455
456
457
458
def test_interpolate():
    from mmcv.onnx.symbolic import register_extra_symbolics
    opset_version = 11
    register_extra_symbolics(opset_version)
459

limm's avatar
limm committed
460
    def func(feat, scale_factor=2):
limm's avatar
limm committed
461
        out = F.interpolate(feat, scale_factor=scale_factor)
limm's avatar
limm committed
462
        return out
463

limm's avatar
limm committed
464
465
466
467
468
469
470
471
472
473
474
475
    net = WrapFunction(func)
    net = net.cpu().eval()
    dummy_input = torch.randn(2, 4, 8, 8).cpu()
    torch.onnx.export(
        net,
        dummy_input,
        onnx_file,
        input_names=['input'],
        opset_version=opset_version)
    sess = rt.InferenceSession(onnx_file)
    onnx_result = sess.run(None, {'input': dummy_input.detach().numpy()})
    pytorch_result = func(dummy_input).detach().numpy()
476

limm's avatar
limm committed
477
    assert np.allclose(pytorch_result, onnx_result, atol=1e-3)
478
479


limm's avatar
limm committed
480
def test_rotated_feature_align():
limm's avatar
limm committed
481
482
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
limm's avatar
limm committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    try:
        from mmcv.ops import get_onnxruntime_op_path, rotated_feature_align
    except (ImportError, ModuleNotFoundError):
        pytest.skip('rotated_feature_align op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    spatial_scale = 1.0 / 8
    points = 1

    def warpped_function(feature, bbox):
        return rotated_feature_align(
            feature, bbox, spatial_scale=spatial_scale, points=points)

    feature = torch.tensor([[[[1.2924, -0.2172, -0.5222, 0.1172],
                              [0.9144, 1.2248, 1.3115, -0.9690],
                              [-0.8949, -1.1797, -0.9093, -0.3961],
                              [-0.4586, 0.5062, -0.7947, -0.7397]],
                             [[-1.0943, -0.7495, 1.3461, -1.1652],
                              [0.2034, 0.6763, -1.2357, 0.5231],
                              [-1.0062, 1.2592, 1.4225, -0.3951],
                              [-0.1242, -1.6240, 0.1932, 2.7181]],
                             [[-1.6271, -1.0276, 0.0578, -0.2997],
                              [-0.9684, -1.6946, -1.3188, -1.1938],
                              [-1.6744, -0.8917, -0.6556, 1.0073],
                              [-0.1205, 0.3671, -0.3731, -0.5347]]],
                            [[[0.7035, 0.2089, -0.1774, 3.4670],
                              [-0.8505, -0.9278, 1.4714, 0.1644],
                              [0.0898, 0.3531, -0.4007, 0.1927],
                              [1.2569, -0.2636, -0.5223, 0.0616]],
                             [[0.1760, -0.7639, -0.4600, -1.3260],
                              [-0.9921, -0.2970, -0.8955, 1.0508],
                              [1.3515, -0.1641, 1.9679, 1.1986],
                              [-0.3616, 0.6287, 0.4933, 0.3360]],
                             [[-0.5860, 0.2124, -0.8700, 2.4200],
                              [-0.0551, -1.5103, -1.6779, 0.8399],
                              [0.8431, 1.2414, -1.1243, -0.3887],
                              [-2.1254, 0.6047, -0.3515, 0.7254]]]])

    bbox = torch.tensor(
        [[[[1.3080e+01, 1.2688e+01, 1.1214e+01, 9.3944e+01, -9.1905e-01],
           [3.8104e+01, 1.0134e+01, 1.4659e+02, 9.0306e+01, -9.8211e-01],
           [-5.3213e+01, 4.9508e+01, 5.1513e+01, 3.2055e+01, -3.1954e-01],
           [2.6974e+01, 2.5248e+01, 5.4495e+01, 3.1083e+00, -6.2127e-01]],
          [[-1.5604e+01, -5.1908e+01, 2.3998e+02, 1.5008e+01, -1.2546e+00],
           [3.1354e+01, -7.3635e+00, 6.7879e+01, 3.5081e+01, -3.3851e-01],
           [-5.3292e+00, 9.1946e+00, 1.2834e+01, 1.0485e+01, -1.3039e+00],
           [-2.3925e+01, 3.6623e+01, 3.9875e+01, 7.2009e+01, -6.5934e-01]],
          [[7.2114e+01, -2.3781e+01, 2.9106e+01, 8.4501e+01, -1.1340e+00],
           [2.6258e+01, -7.7034e+00, 1.7629e+02, 1.0615e+02, -1.2156e+00],
           [3.8057e+01, 4.6016e+01, 1.2965e+01, 6.9384e+00, -1.0855e+00],
           [2.4428e+01, -1.6189e+01, 2.0572e+02, 3.1622e+01, -1.5719e-01]],
          [[3.8226e+00, 2.9608e+01, 1.4457e+01, 6.8179e+01, -9.1997e-01],
           [2.5003e+01, -4.2490e+01, 9.6007e+01, 4.9086e+01, -1.4786e+00],
           [8.5983e+01, 5.4980e+01, 7.8080e+01, 1.0003e+02, -1.0926e+00],
           [9.9065e+00, 4.1457e+01, 5.9799e+00, 1.7973e+01, -5.6313e-01]]],
         [[[-1.8244e+01, 4.6309e+00, 5.3010e+01, 2.4310e+01, -7.0345e-01],
           [1.9419e+01, 3.6704e+01, 5.2390e+01, 5.4133e+01, -3.7730e-01],
           [5.6387e+01, 2.3752e+01, 9.0441e+00, 1.7792e+01, -1.5583e+00],
           [3.6303e+01, 1.6396e+01, 2.0283e+01, 1.9148e+01, -8.3419e-01]],
          [[3.2169e+01, 3.0521e+01, 2.6283e+01, 1.9680e+02, -3.0454e-01],
           [2.5788e+01, -3.2189e+01, 8.8882e+01, 1.0207e+02, -1.5328e+00],
           [8.4676e+00, -1.6668e+01, 2.4657e+01, 1.1275e+02, -4.0388e-01],
           [-1.0799e+01, 6.0422e+00, 9.5807e+00, 3.3677e+01, -3.5438e-01]],
          [[6.9363e+01, 1.0850e+01, 2.5968e+01, 2.2311e+01, -1.6408e-01],
           [2.8140e+00, 4.6843e+00, 3.1289e+00, 2.1480e+01, -6.7583e-01],
           [2.6661e+01, 4.5290e+01, 6.1679e+00, 3.0005e+01, -8.9806e-01],
           [5.0871e+00, 1.3234e+01, 9.2087e+01, 4.9622e+01, -2.8020e-01]],
          [[-1.2643e+01, 2.5176e+01, 5.0488e+01, 5.4246e+01, -4.4840e-01],
           [-3.4521e+01, 9.8435e-01, 5.2413e+01, 9.7996e+00, -8.4218e-01],
           [4.9829e+01, -1.0808e+01, 2.9848e+01, 7.3579e+01, -6.2672e-01],
           [8.0446e+01, 2.8064e+01, 4.5273e+01, 5.3809e+01, -1.2359e+00]]]])

    # compute pytorch_output
    with torch.no_grad():
        pytorch_output = rotated_feature_align(
            feature, bbox, spatial_scale=spatial_scale, points=points)

    # export and load onnx model
    wrapped_model = WrapFunction(warpped_function)
    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (feature, bbox),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['feature', 'bbox'],
            opset_version=11)

    onnx_model = onnx.load(onnx_file)
    session_options = rt.SessionOptions()
    if os.path.exists(ort_custom_op_path):
        session_options.register_custom_ops_library(ort_custom_op_path)

    # compute onnx_output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
    sess = rt.InferenceSession(onnx_file, session_options)
    onnx_output = sess.run(None, {
        'feature': feature.detach().numpy(),
        'bbox': bbox.detach().numpy()
    })
    onnx_output = onnx_output[0]

    # allclose
    assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
def test_corner_pool(mode, opset=11):
597

limm's avatar
limm committed
598
599
600
601
    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')
602

limm's avatar
limm committed
603
    from mmcv.ops.corner_pool import CornerPool
604

limm's avatar
limm committed
605
606
607
    def corner_pool_func(input):
        corner_pool_module = CornerPool(mode)
        return corner_pool_module.corner_pool.apply(input)
608

limm's avatar
limm committed
609
    wrapped_model = WrapFunction(corner_pool_func).eval()
610

limm's avatar
limm committed
611
    input = torch.rand((2, 3, 9, 12))  # (n,c,h,w)
612

limm's avatar
limm committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    with torch.no_grad():
        torch.onnx.export(
            wrapped_model,
            input,
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input'],
            output_names=['output'],
            opset_version=opset)

    onnx_model = onnx.load(onnx_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 1)

    session_options = rt.SessionOptions()
    session_options.register_custom_ops_library(ort_custom_op_path)
    sess = rt.InferenceSession(onnx_file, session_options)
    ort_result = sess.run(None, {'input': input.detach().numpy()})
    pytorch_results = wrapped_model(input.clone())

    assert np.allclose(pytorch_results, ort_result, atol=1e-5)


@pytest.mark.parametrize('key', ['cummax', 'cummin'])
def test_cummax_cummin(key, opset=11):

    # Note generally `cummax` or `cummin` is exportable to ONNX
    # as long as the pytorch version >= 1.5.0, since `torch.cummax`
    # is only supported with torch >= 1.5.0.
    # But when `cummax` or `cummin` serves as an intermediate component
    # whose outputs is used as inputs for another modules, it's expected
    # that pytorch version must be >= 1.7.0. Otherwise error appears like:
    # `RuntimeError: tuple  appears in op that does not forward tuples,
    # unsupported 'kind: prim::PythonOp`.
    if version.parse(torch.__version__) < version.parse('1.7.0'):
        pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')

    # register custom op `mmcv::cummax` and `mmcv::cummin`
    from mmcv.onnx.symbolic import register_extra_symbolics
    register_extra_symbolics(opset)

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    input_list = [
        # arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
        torch.rand((2, 3, 4, 1, 5)),
limm's avatar
limm committed
665
        torch.rand(1),
limm's avatar
limm committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        torch.rand((2, 0, 1)),  # tensor.numel() is 0
        torch.FloatTensor(),  # empty tensor
    ]

    cummax_cummin_funcs = {'cummax': torch.cummax, 'cummin': torch.cummin}

    for input in input_list:
        ndims = input.dim()
        # valid dim range is [-ndims, ndims-1]
        # test for all `dim` value which is valid
        for dim in range(-ndims, ndims):
            cummax_func = partial(cummax_cummin_funcs[key], dim=dim)
            wrapped_model = WrapFunction(cummax_func).eval()

            with torch.no_grad():
                torch.onnx.export(
                    wrapped_model,
                    input,
                    onnx_file,
                    export_params=True,
                    keep_initializers_as_inputs=True,
                    input_names=['input'],
                    output_names=['output', 'indices'],
                    opset_version=opset)

            onnx_model = onnx.load(onnx_file)
            input_all = [node.name for node in onnx_model.graph.input]
            input_initializer = [
                node.name for node in onnx_model.graph.initializer
            ]
            net_feed_input = list(set(input_all) - set(input_initializer))
            assert (len(net_feed_input) == 1)

            session_options = rt.SessionOptions()
            session_options.register_custom_ops_library(ort_custom_op_path)
            sess = rt.InferenceSession(onnx_file, session_options)
            ort_output, ort_inds = sess.run(None,
                                            {'input': input.detach().numpy()})
            pytorch_output, pytorch_inds = wrapped_model(input.clone())
            pytorch_output = pytorch_output.detach().numpy()
            pytorch_inds = pytorch_inds.detach().numpy()
            assert np.allclose(pytorch_output, ort_output, atol=1e-5)
            assert np.all(pytorch_inds == ort_inds)


@pytest.mark.parametrize('shifts_dims_pair', [([-3, 5], [2, 0]), (5, None)])
def test_roll(shifts_dims_pair):
    opset = 11
    from mmcv.onnx.symbolic import register_extra_symbolics
    register_extra_symbolics(opset)

    input = torch.arange(0, 4 * 5 * 6, dtype=torch.float32).view(4, 5, 6)

    shifts, dims = shifts_dims_pair
    func = partial(torch.roll, shifts=shifts, dims=dims)
    wrapped_model = WrapFunction(func).eval()
722

limm's avatar
limm committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    with torch.no_grad():
        torch.onnx.export(
            wrapped_model,
            input,
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input'],
            output_names=['output'],
            opset_version=opset)

    onnx_model = onnx.load(onnx_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 1)

    sess = rt.InferenceSession(onnx_file)
    ort_output = sess.run(None, {'input': input.detach().numpy()})[0]
742

limm's avatar
limm committed
743
744
    with torch.no_grad():
        pytorch_output = wrapped_model(input.clone())
745

limm's avatar
limm committed
746
    torch.testing.assert_allclose(ort_output, pytorch_output)
747
748


limm's avatar
limm committed
749
750
751
752
753
754
755
756
757
758
@pytest.mark.skipif(
    not torch.cuda.is_available(),
    reason='modulated_deform_conv2d only supports in GPU')
def test_modulated_deform_conv2d():
    try:
        from mmcv.ops import ModulatedDeformConv2d, get_onnxruntime_op_path
    except (ImportError, ModuleNotFoundError):
        pytest.skip('modulated_deform_conv op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
limm's avatar
limm committed
759
760
761
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

limm's avatar
limm committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    # modulated deform conv config
    in_channels = 3
    out_channels = 64
    stride = 1
    padding = 0
    dilation = 1
    groups = 1
    deform_groups = 1
    kernel_size = 3

    input = torch.rand(1, in_channels, 28, 28).cuda()  # (n, c, h, w)
    conv_offset = nn.Conv2d(
        in_channels=3,
        out_channels=deform_groups * 3 * kernel_size * kernel_size,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=True).cuda()
    conv_offset.cuda()
    out = conv_offset(input)
    o1, o2, mask = torch.chunk(out, 3, dim=1)
    offset = torch.cat((o1, o2), dim=1)
    mask = torch.sigmoid(mask)

    model_with_bias = ModulatedDeformConv2d(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        deform_groups,
        bias=True)
    model_without_bias = ModulatedDeformConv2d(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        deform_groups,
        bias=False)
    models = [model_with_bias.cuda(), model_without_bias.cuda()]

    for model in models:
        # export and load onnx model
        with torch.no_grad():
            torch.onnx.export(
                model, (input, offset, mask),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'offset', 'mask'],
                opset_version=11)
819

limm's avatar
limm committed
820
821
822
        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)
823

limm's avatar
limm committed
824
825
826
827
828
829
830
831
        # compute onnx_output
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_output = sess.run(
            None, {
                'input': input.cpu().detach().numpy(),
                'offset': offset.cpu().detach().numpy(),
                'mask': mask.cpu().detach().numpy()
            })[0]
832

limm's avatar
limm committed
833
834
835
836
837
        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = model(input, offset, mask).cpu()
        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
838
839


limm's avatar
limm committed
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
def test_deform_conv2d(threshold=1e-3):
    try:
        from mmcv.ops import DeformConv2d, get_onnxruntime_op_path
    except (ImportError, ModuleNotFoundError):
        pytest.skip('deform_conv op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    # deform conv config
    # modulated deform conv config
    in_channels = 1
    out_channels = 64
    stride = 1
    padding = 0
    dilation = 1
    groups = 1
    deform_groups = 1
    kernel_size = 2
    input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
                     [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
                     [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
                     [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
    offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
    deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]

    x = torch.tensor(input)
    conv_offset = nn.Conv2d(
        in_channels=in_channels,
        out_channels=deform_groups * 2 * kernel_size * kernel_size,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=True)

    conv_offset.weight.data = torch.nn.Parameter(
        torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
    conv_offset.bias.data = torch.nn.Parameter(
        torch.Tensor(offset_bias).reshape(8))

    offset = conv_offset(x)

    model = DeformConv2d(in_channels, out_channels, kernel_size, stride,
                         padding, dilation, groups, deform_groups)

    model.weight.data = torch.nn.Parameter(
        torch.Tensor(deform_weight).reshape(1, 1, 2, 2))
890

limm's avatar
limm committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    with torch.no_grad():
        torch.onnx.export(
            model, (x, offset),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input', 'offset'],
            opset_version=11)

    session_options = rt.SessionOptions()
    if os.path.exists(ort_custom_op_path):
        session_options.register_custom_ops_library(ort_custom_op_path)

    # compute onnx_output
    sess = rt.InferenceSession(onnx_file, session_options)
    onnx_output = sess.run(
        None, {
            'input': x.cpu().detach().numpy(),
            'offset': offset.cpu().detach().numpy(),
        })[0]

    # compute pytorch_output
    with torch.no_grad():
        pytorch_output = model(x, offset).cpu()
    # allclose
    assert np.allclose(pytorch_output, onnx_output, atol=1e-3)