tensorrt_plugin.md 7.42 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
## TensorRT Deployment

### <span style="color:red">DeprecationWarning</span>

TensorRT support will be deprecated in the future.
Welcome to use the unified model deployment toolbox MMDeploy: https://github.com/open-mmlab/mmdeploy
limm's avatar
limm committed
7
8
9

<!-- TOC -->

limm's avatar
limm committed
10
11
- [TensorRT Deployment](#tensorrt-deployment)
  - [<span style="color:red">DeprecationWarning</span>](#deprecationwarning)
limm's avatar
limm committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
  - [Introduction](#introduction)
  - [List of TensorRT plugins supported in MMCV](#list-of-tensorrt-plugins-supported-in-mmcv)
  - [How to build TensorRT plugins in MMCV](#how-to-build-tensorrt-plugins-in-mmcv)
    - [Prerequisite](#prerequisite)
    - [Build on Linux](#build-on-linux)
  - [Create TensorRT engine and run inference in python](#create-tensorrt-engine-and-run-inference-in-python)
  - [How to add a TensorRT plugin for custom op in MMCV](#how-to-add-a-tensorrt-plugin-for-custom-op-in-mmcv)
    - [Main procedures](#main-procedures)
    - [Reminders](#reminders)
  - [Known Issues](#known-issues)
  - [References](#references)

<!-- TOC -->

### Introduction

**NVIDIA TensorRT** is a software development kit(SDK) for high-performance inference of deep learning models. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. Please check its [developer's website](https://developer.nvidia.com/tensorrt) for more information.
To ease the deployment of trained models with custom operators from `mmcv.ops` using TensorRT, a series of TensorRT plugins are included in MMCV.

### List of TensorRT plugins supported in MMCV

limm's avatar
limm committed
33
34
35
36
37
38
39
40
41
| ONNX Operator             | TensorRT Plugin                                                                 | MMCV Releases |
| :------------------------ | :------------------------------------------------------------------------------ | :-----------: |
| MMCVRoiAlign              | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign)                           |     1.2.6     |
| ScatterND                 | [ScatterND](./tensorrt_custom_ops.md#scatternd)                                 |     1.2.6     |
| NonMaxSuppression         | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression)                 |     1.3.0     |
| MMCVDeformConv2d          | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d)                   |     1.3.0     |
| grid_sampler              | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler)                           |     1.3.1     |
| cummax                    | [cummax](./tensorrt_custom_ops.md#cummax)                                       |     1.3.5     |
| cummin                    | [cummin](./tensorrt_custom_ops.md#cummin)                                       |     1.3.5     |
limm's avatar
limm committed
42
| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) |     1.3.5     |
limm's avatar
limm committed
43
| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) |     1.3.8     |
limm's avatar
limm committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Notes

- All plugins listed above are developed on TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0

### How to build TensorRT plugins in MMCV

#### Prerequisite

- Clone repository

```bash
git clone https://github.com/open-mmlab/mmcv.git
```

- Install TensorRT

Download the corresponding TensorRT build from [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download).

For example, for Ubuntu 16.04 on x86-64 with cuda-10.2, the downloaded file is `TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`.

Then, install as below:

```bash
cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz
export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib
```

Install python packages: tensorrt, graphsurgeon, onnx-graphsurgeon

```bash
pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl
pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl
pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl
```

For more detailed information of installing TensorRT using tar, please refer to [Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar).

limm's avatar
limm committed
84
85
86
87
- Install cuDNN

Install cuDNN 8 following [Nvidia' website](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar).

limm's avatar
limm committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#### Build on Linux

```bash
cd mmcv ## to MMCV root directory
MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e .
```

### Create TensorRT engine and run inference in python

Here is an example.

```python
import torch
import onnx

from mmcv.tensorrt import (TRTWrapper, onnx2trt, save_trt_engine,
                                   is_tensorrt_plugin_loaded)

assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv'

onnx_file = 'sample.onnx'
trt_file = 'sample.trt'
onnx_model = onnx.load(onnx_file)

## Model input
inputs = torch.rand(1, 3, 224, 224).cuda()
## Model input shape info
opt_shape_dict = {
    'input': [list(inputs.shape),
              list(inputs.shape),
              list(inputs.shape)]
}

## Create TensorRT engine
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
    onnx_model,
    opt_shape_dict,
    max_workspace_size=max_workspace_size)

## Save TensorRT engine
save_trt_engine(trt_engine, trt_file)

## Run inference with TensorRT
trt_model = TRTWrapper(trt_file, ['input'], ['output'])

with torch.no_grad():
    trt_outputs = trt_model({'input': inputs})
    output = trt_outputs['output']

```

### How to add a TensorRT plugin for custom op in MMCV

#### Main procedures

Below are the main steps:

1. Add c++ header file
2. Add c++ source file
3. Add cuda kernel file
4. Register plugin in `trt_plugin.cpp`
5. Add unit test in `tests/test_ops/test_tensorrt.py`

**Take RoIAlign plugin `roi_align` for example.**

1. Add header `trt_roi_align.hpp` to TensorRT include directory `mmcv/ops/csrc/tensorrt/`
limm's avatar
limm committed
155

limm's avatar
limm committed
156
2. Add source `trt_roi_align.cpp` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
limm's avatar
limm committed
157

limm's avatar
limm committed
158
3. Add cuda kernel `trt_roi_align_kernel.cu` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
limm's avatar
limm committed
159

limm's avatar
limm committed
160
161
4. Register `roi_align` plugin in [trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp)

limm's avatar
limm committed
162
163
   ```c++
   #include "trt_plugin.hpp"
limm's avatar
limm committed
164

limm's avatar
limm committed
165
   #include "trt_roi_align.hpp"
limm's avatar
limm committed
166

limm's avatar
limm committed
167
   REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);
limm's avatar
limm committed
168

limm's avatar
limm committed
169
170
171
172
   extern "C" {
   bool initLibMMCVInferPlugins() { return true; }
   }  // extern "C"
   ```
limm's avatar
limm committed
173
174
175
176
177
178

5. Add unit test into `tests/test_ops/test_tensorrt.py`
   Check [here](https://github.com/open-mmlab/mmcv/blob/master/tests/test_ops/test_tensorrt.py) for examples.

#### Reminders

limm's avatar
limm committed
179
180
- *Please note that this feature is experimental and may change in the future. Strongly suggest users always try with the latest master branch.*

limm's avatar
limm committed
181
182
183
184
185
186
187
188
189
190
191
192
193
- Some of the [custom ops](https://mmcv.readthedocs.io/en/latest/ops.html) in `mmcv` have their cuda implementations, which could be referred.

### Known Issues

- None

### References

- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html)
- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT)
- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt)
- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html)
- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html)