test_onnx.py 28.5 KB
Newer Older
1
import os
2
import warnings
3
4
5
6
7
from functools import partial

import numpy as np
import onnx
import onnxruntime as rt
8
import pytest
9
10
import torch
import torch.nn as nn
11
import torch.nn.functional as F
12
from packaging import version
13
14
15
16

onnx_file = 'tmp.onnx'


17
18
19
20
21
22
23
24
25
26
27
28
29
@pytest.fixture(autouse=True)
def run_before_and_after_test():
    # clear onnx_file before test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)

    yield

    # clear onnx_file after test
    if os.path.exists(onnx_file):
        os.remove(onnx_file)


30
31
32
33
34
35
36
37
38
39
class WrapFunction(nn.Module):

    def __init__(self, wrapped_function):
        super(WrapFunction, self).__init__()
        self.wrapped_function = wrapped_function

    def forward(self, *args, **kwargs):
        return self.wrapped_function(*args, **kwargs)


40
def process_grid_sample(func, input, grid, ort_custom_op_path=''):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    wrapped_model = WrapFunction(func).eval()

    input_names = ['input', 'grid']
    output_names = ['output']

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (input, grid),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=input_names,
            output_names=output_names,
            opset_version=11)

    onnx_model = onnx.load(onnx_file)

    session_options = rt.SessionOptions()
59
60
    if ort_custom_op_path:
        session_options.register_custom_ops_library(ort_custom_op_path)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    # get onnx output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
    sess = rt.InferenceSession(onnx_file, session_options)
    ort_result = sess.run(None, {
        'input': input.detach().numpy(),
        'grid': grid.detach().numpy()
    })
    pytorch_results = wrapped_model(input.clone(), grid.clone())
    assert np.allclose(pytorch_results, ort_result, atol=1e-3)


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])
def test_grid_sample(mode, padding_mode, align_corners):
    from mmcv.onnx.symbolic import register_extra_symbolics
    opset_version = 11
    register_extra_symbolics(opset_version)

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    input = torch.rand(1, 1, 10, 10)
    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
91
92
    grid = F.affine_grid(
        grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
93
94

    def func(input, grid):
95
        return F.grid_sample(
96
97
98
99
100
101
102
103
104
105
106
107
            input,
            grid,
            mode=mode,
            padding_mode=padding_mode,
            align_corners=align_corners)

    return process_grid_sample(func, input, grid, ort_custom_op_path)


@pytest.mark.parametrize('align_corners', [True, False])
def test_bilinear_grid_sample(align_corners):
    from mmcv.ops.point_sample import bilinear_grid_sample
108

109
110
111
112
113
114
    # only support pytorch >= 1.5.0
    if version.parse(torch.__version__) < version.parse('1.5.0'):
        pytest.skip('Only support PyTorch >= 1.5.0')

    input = torch.rand(1, 1, 10, 10)
    grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
115
116
    grid = F.affine_grid(
        grid, (1, 1, 15, 15), align_corners=align_corners).type_as(input)
117
118
119
120
121
122
123

    def func(input, grid):
        return bilinear_grid_sample(input, grid, align_corners=align_corners)

    return process_grid_sample(func, input, grid)


124
def test_nms():
125
126
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
tangyanf's avatar
tangyanf committed
127
    from mmcv.ops import get_onnxruntime_op_path, nms
128
129
130
131
132
133
    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                        dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)
    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)
SemyonBevzuk's avatar
SemyonBevzuk committed
134
135
136
137

    nms = partial(
        nms, iou_threshold=0.3, offset=0, score_threshold=0, max_num=0)
    pytorch_dets, _ = nms(boxes, scores)
138
    pytorch_score = pytorch_dets[:, 4]
SemyonBevzuk's avatar
SemyonBevzuk committed
139

140
141
142
143
144
145
146
147
148
149
150
    wrapped_model = WrapFunction(nms)
    wrapped_model.cpu().eval()
    with torch.no_grad():
        torch.onnx.export(
            wrapped_model, (boxes, scores),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['boxes', 'scores'],
            opset_version=11)

SemyonBevzuk's avatar
SemyonBevzuk committed
151
    onnx_model = onnx.load(onnx_file)
tangyanf's avatar
tangyanf committed
152
153
    ort_custom_op_path = get_onnxruntime_op_path()
    session_options = rt.SessionOptions()
SemyonBevzuk's avatar
SemyonBevzuk committed
154
155
    if os.path.exists(ort_custom_op_path):
        session_options.register_custom_ops_library(ort_custom_op_path)
tangyanf's avatar
tangyanf committed
156

157
158
159
160
161
    # get onnx output
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 2)
tangyanf's avatar
tangyanf committed
162
    sess = rt.InferenceSession(onnx_file, session_options)
163
164
165
166
167
168
    onnx_dets, _ = sess.run(None, {
        'scores': scores.detach().numpy(),
        'boxes': boxes.detach().numpy()
    })
    onnx_score = onnx_dets[:, 4]
    assert np.allclose(pytorch_score, onnx_score, atol=1e-3)
169
170


171
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
172
def test_softnms():
173
174
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
175
176
177
178
179
180
181
182
183
184
185
186
    from mmcv.ops import get_onnxruntime_op_path, soft_nms

    # only support pytorch >= 1.7.0
    if version.parse(torch.__version__) < version.parse('1.7.0'):
        warnings.warn('test_softnms should be ran with pytorch >= 1.7.0')
        return

    # only support onnxruntime >= 1.5.1
    assert version.parse(rt.__version__) >= version.parse(
        '1.5.1'), 'test_softnms should be ran with onnxruntime >= 1.5.1'

    ort_custom_op_path = get_onnxruntime_op_path()
187
188
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('softnms for onnxruntime is not compiled.')
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0],
                         [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]],
                        dtype=np.float32)
    np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32)

    boxes = torch.from_numpy(np_boxes)
    scores = torch.from_numpy(np_scores)

    configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'],
               [0.3, 0.5, 0.01, 'naive']]

    session_options = rt.SessionOptions()
    session_options.register_custom_ops_library(ort_custom_op_path)

    for _iou_threshold, _sigma, _min_score, _method in configs:
        pytorch_dets, pytorch_inds = soft_nms(
            boxes,
            scores,
            iou_threshold=_iou_threshold,
            sigma=_sigma,
            min_score=_min_score,
            method=_method)
        nms = partial(
            soft_nms,
            iou_threshold=_iou_threshold,
            sigma=_sigma,
            min_score=_min_score,
            method=_method)

        wrapped_model = WrapFunction(nms)
        wrapped_model.cpu().eval()
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (boxes, scores),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['boxes', 'scores'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_dets, onnx_inds = sess.run(None, {
            'scores': scores.detach().numpy(),
            'boxes': boxes.detach().numpy()
        })
243

244
245
246
247
        assert np.allclose(pytorch_dets, onnx_dets, atol=1e-3)
        assert np.allclose(onnx_inds, onnx_inds, atol=1e-3)


248
def test_roialign():
249
250
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
251
    try:
252
        from mmcv.ops import get_onnxruntime_op_path, roi_align
253
254
255
256
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align(torch_input, torch_rois, (pool_w, pool_h),
                         spatial_scale, sampling_ratio, 'avg', True)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align(input, rois, (pool_w, pool_h),
                                       spatial_scale, sampling_ratio, 'avg',
                                       True)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
295

296
        onnx_model = onnx.load(onnx_file)
297
298
299
        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)
300
301
302
303
304
305
306
307

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
308
        sess = rt.InferenceSession(onnx_file, session_options)
309
310
311
312
313
314
315
        onnx_output = sess.run(None, {
            'input': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose
316

317
318
319
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


320
321
322
323
def test_roialign_rotated():
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
    try:
324
        from mmcv.ops import get_onnxruntime_op_path, roi_align_rotated
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    except (ImportError, ModuleNotFoundError):
        pytest.skip('roi_align_aligned op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')
    # roi align config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0
    sampling_ratio = 2

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
              ([[[[1., 2.], [3., 4.]]]], [[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
              ([[[[1., 2.], [3., 4.]],
                 [[4., 3.], [2., 1.]]]], [[0., 0.5, 0.5, 1., 1., 0]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3., 0]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 1.5, 1.5, 3., 3.,
                                             np.pi / 2]])]

    def warpped_function(torch_input, torch_rois):
        return roi_align_rotated(torch_input, torch_rois, (pool_w, pool_h),
                                 spatial_scale, sampling_ratio, True, False)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input)
        rois = torch.from_numpy(np_rois)

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_align_rotated(input, rois, (pool_w, pool_h),
                                               spatial_scale, sampling_ratio,
                                               True, False)

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['features', 'rois'],
                opset_version=11)

        onnx_model = onnx.load(onnx_file)
        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_output = sess.run(None, {
            'features': input.detach().numpy(),
            'rois': rois.detach().numpy()
        })
        onnx_output = onnx_output[0]

        # allclose
394

395
396
397
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)


398
@pytest.mark.skipif(not torch.cuda.is_available(), reason='test requires GPU')
399
def test_roipool():
400
401
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    from mmcv.ops import roi_pool

    # roi pool config
    pool_h = 2
    pool_w = 2
    spatial_scale = 1.0

    inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2.], [3., 4.]], [[4., 3.],
                                        [2., 1.]]]], [[0., 0., 0., 1., 1.]]),
              ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
                  [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]

    def warpped_function(torch_input, torch_rois):
        return roi_pool(torch_input, torch_rois, (pool_w, pool_h),
                        spatial_scale)

    for case in inputs:
        np_input = np.array(case[0], dtype=np.float32)
        np_rois = np.array(case[1], dtype=np.float32)
        input = torch.from_numpy(np_input).cuda()
        rois = torch.from_numpy(np_rois).cuda()

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = roi_pool(input, rois, (pool_w, pool_h),
                                      spatial_scale)
            pytorch_output = pytorch_output.cpu()

        # export and load onnx model
        wrapped_model = WrapFunction(warpped_function)
        with torch.no_grad():
            torch.onnx.export(
                wrapped_model, (input, rois),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'rois'],
                opset_version=11)
        onnx_model = onnx.load(onnx_file)

        # compute onnx_output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 2)
        sess = rt.InferenceSession(onnx_file)
        onnx_output = sess.run(
            None, {
                'input': input.detach().cpu().numpy(),
                'rois': rois.detach().cpu().numpy()
            })
        onnx_output = onnx_output[0]

        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
460
461


462
463
464
465
466
467
def test_interpolate():
    from mmcv.onnx.symbolic import register_extra_symbolics
    opset_version = 11
    register_extra_symbolics(opset_version)

    def func(feat, scale_factor=2):
468
        out = F.interpolate(feat, scale_factor=scale_factor)
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        return out

    net = WrapFunction(func)
    net = net.cpu().eval()
    dummy_input = torch.randn(2, 4, 8, 8).cpu()
    torch.onnx.export(
        net,
        dummy_input,
        onnx_file,
        input_names=['input'],
        opset_version=opset_version)
    sess = rt.InferenceSession(onnx_file)
    onnx_result = sess.run(None, {'input': dummy_input.detach().numpy()})
    pytorch_result = func(dummy_input).detach().numpy()
483

484
    assert np.allclose(pytorch_result, onnx_result, atol=1e-3)
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528


@pytest.mark.parametrize('mode', ['top', 'bottom', 'left', 'right'])
def test_corner_pool(mode, opset=11):
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    from mmcv.ops.corner_pool import CornerPool

    def corner_pool_func(input):
        corner_pool_module = CornerPool(mode)
        return corner_pool_module.corner_pool.apply(input)

    wrapped_model = WrapFunction(corner_pool_func).eval()

    input = torch.rand((2, 3, 9, 12))  # (n,c,h,w)

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model,
            input,
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input'],
            output_names=['output'],
            opset_version=opset)

    onnx_model = onnx.load(onnx_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 1)

    session_options = rt.SessionOptions()
    session_options.register_custom_ops_library(ort_custom_op_path)
    sess = rt.InferenceSession(onnx_file, session_options)
    ort_result = sess.run(None, {'input': input.detach().numpy()})
    pytorch_results = wrapped_model(input.clone())
529

530
    assert np.allclose(pytorch_results, ort_result, atol=1e-5)
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604


@pytest.mark.parametrize('key', ['cummax', 'cummin'])
def test_cummax_cummin(key, opset=11):
    if torch.__version__ == 'parrots':
        pytest.skip('onnx is not supported in parrots directly')

    # Note generally `cummax` or `cummin` is exportable to ONNX
    # as long as the pytorch version >= 1.5.0, since `torch.cummax`
    # is only supported with torch >= 1.5.0.
    # But when `cummax` or `cummin` serves as an intermediate component
    # whose outputs is used as inputs for another modules, it's expected
    # that pytorch version must be >= 1.7.0. Otherwise error appears like:
    # `RuntimeError: tuple  appears in op that does not forward tuples,
    # unsupported 'kind: prim::PythonOp`.
    if version.parse(torch.__version__) < version.parse('1.7.0'):
        pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')

    # register custom op `mmcv::cummax` and `mmcv::cummin`
    from mmcv.onnx.symbolic import register_extra_symbolics
    register_extra_symbolics(opset)

    from mmcv.ops import get_onnxruntime_op_path
    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    input_list = [
        # arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
        torch.rand((2, 3, 4, 1, 5)),
        torch.rand((1)),
        torch.rand((2, 0, 1)),  # tensor.numel() is 0
        torch.FloatTensor(),  # empty tensor
    ]

    cummax_cummin_funcs = {'cummax': torch.cummax, 'cummin': torch.cummin}

    for input in input_list:
        ndims = input.dim()
        # valid dim range is [-ndims, ndims-1]
        # test for all `dim` value which is valid
        for dim in range(-ndims, ndims):
            cummax_func = partial(cummax_cummin_funcs[key], dim=dim)
            wrapped_model = WrapFunction(cummax_func).eval()

            with torch.no_grad():
                torch.onnx.export(
                    wrapped_model,
                    input,
                    onnx_file,
                    export_params=True,
                    keep_initializers_as_inputs=True,
                    input_names=['input'],
                    output_names=['output', 'indices'],
                    opset_version=opset)

            onnx_model = onnx.load(onnx_file)
            input_all = [node.name for node in onnx_model.graph.input]
            input_initializer = [
                node.name for node in onnx_model.graph.initializer
            ]
            net_feed_input = list(set(input_all) - set(input_initializer))
            assert (len(net_feed_input) == 1)

            session_options = rt.SessionOptions()
            session_options.register_custom_ops_library(ort_custom_op_path)
            sess = rt.InferenceSession(onnx_file, session_options)
            ort_output, ort_inds = sess.run(None,
                                            {'input': input.detach().numpy()})
            pytorch_output, pytorch_inds = wrapped_model(input.clone())
            pytorch_output = pytorch_output.detach().numpy()
            pytorch_inds = pytorch_inds.detach().numpy()
            assert np.allclose(pytorch_output, ort_output, atol=1e-5)
            assert np.all(pytorch_inds == ort_inds)
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642


@pytest.mark.parametrize('shifts_dims_pair', [([-3, 5], [2, 0]), (5, None)])
def test_roll(shifts_dims_pair):
    opset = 11
    from mmcv.onnx.symbolic import register_extra_symbolics
    register_extra_symbolics(opset)

    input = torch.arange(0, 4 * 5 * 6, dtype=torch.float32).view(4, 5, 6)

    shifts, dims = shifts_dims_pair
    func = partial(torch.roll, shifts=shifts, dims=dims)
    wrapped_model = WrapFunction(func).eval()

    with torch.no_grad():
        torch.onnx.export(
            wrapped_model,
            input,
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input'],
            output_names=['output'],
            opset_version=opset)

    onnx_model = onnx.load(onnx_file)
    input_all = [node.name for node in onnx_model.graph.input]
    input_initializer = [node.name for node in onnx_model.graph.initializer]
    net_feed_input = list(set(input_all) - set(input_initializer))
    assert (len(net_feed_input) == 1)

    sess = rt.InferenceSession(onnx_file)
    ort_output = sess.run(None, {'input': input.detach().numpy()})[0]

    with torch.no_grad():
        pytorch_output = wrapped_model(input.clone())

    torch.testing.assert_allclose(ort_output, pytorch_output)
643
644
645
646
647
648
649
650
651
652


@pytest.mark.skipif(
    torch.__version__ == 'parrots',
    reason='onnx is not supported in parrots directly')
@pytest.mark.skipif(
    not torch.cuda.is_available(),
    reason='modulated_deform_conv2d only supports in GPU')
def test_modulated_deform_conv2d():
    try:
653
        from mmcv.ops import ModulatedDeformConv2d, get_onnxruntime_op_path
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    except (ImportError, ModuleNotFoundError):
        pytest.skip('modulated_deform_conv op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    # modulated deform conv config
    in_channels = 3
    out_channels = 64
    stride = 1
    padding = 0
    dilation = 1
    groups = 1
    deform_groups = 1
    kernel_size = 3

    input = torch.rand(1, in_channels, 28, 28).cuda()  # (n, c, h, w)
    conv_offset = nn.Conv2d(
        in_channels=3,
        out_channels=deform_groups * 3 * kernel_size * kernel_size,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=True).cuda()
    conv_offset.cuda()
    out = conv_offset(input)
    o1, o2, mask = torch.chunk(out, 3, dim=1)
    offset = torch.cat((o1, o2), dim=1)
    mask = torch.sigmoid(mask)

    model_with_bias = ModulatedDeformConv2d(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        deform_groups,
        bias=True)
    model_without_bias = ModulatedDeformConv2d(
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        dilation,
        groups,
        deform_groups,
        bias=False)
    models = [model_with_bias.cuda(), model_without_bias.cuda()]

    for model in models:
        # export and load onnx model
        with torch.no_grad():
            torch.onnx.export(
                model, (input, offset, mask),
                onnx_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                input_names=['input', 'offset', 'mask'],
                opset_version=11)

        session_options = rt.SessionOptions()
        if os.path.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)

        # compute onnx_output
        sess = rt.InferenceSession(onnx_file, session_options)
        onnx_output = sess.run(
            None, {
                'input': input.cpu().detach().numpy(),
                'offset': offset.cpu().detach().numpy(),
                'mask': mask.cpu().detach().numpy()
            })[0]

        # compute pytorch_output
        with torch.no_grad():
            pytorch_output = model(input, offset, mask).cpu()
        # allclose
        assert np.allclose(pytorch_output, onnx_output, atol=1e-3)
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815


@pytest.mark.skipif(
    torch.__version__ == 'parrots',
    reason='onnx is not supported in parrots directly')
def test_deform_conv2d(threshold=1e-3):
    try:
        from mmcv.ops import DeformConv2d, get_onnxruntime_op_path
    except (ImportError, ModuleNotFoundError):
        pytest.skip('deform_conv op is not successfully compiled')

    ort_custom_op_path = get_onnxruntime_op_path()
    if not os.path.exists(ort_custom_op_path):
        pytest.skip('custom ops for onnxruntime are not compiled.')

    # deform conv config
    # modulated deform conv config
    in_channels = 1
    out_channels = 64
    stride = 1
    padding = 0
    dilation = 1
    groups = 1
    deform_groups = 1
    kernel_size = 2
    input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
    offset_weight = [[[0.1, 0.4, 0.6, 0.1]], [[0.3, 0.2, 0.1, 0.3]],
                     [[0.5, 0.5, 0.2, 0.8]], [[0.8, 0.3, 0.9, 0.1]],
                     [[0.3, 0.1, 0.2, 0.5]], [[0.3, 0.7, 0.5, 0.3]],
                     [[0.6, 0.2, 0.5, 0.3]], [[0.4, 0.1, 0.8, 0.4]]]
    offset_bias = [0.7, 0.1, 0.8, 0.5, 0.6, 0.5, 0.4, 0.7]
    deform_weight = [[[0.4, 0.2, 0.1, 0.9]]]

    x = torch.tensor(input)
    conv_offset = nn.Conv2d(
        in_channels=in_channels,
        out_channels=deform_groups * 2 * kernel_size * kernel_size,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=True)

    conv_offset.weight.data = torch.nn.Parameter(
        torch.Tensor(offset_weight).reshape(8, 1, 2, 2))
    conv_offset.bias.data = torch.nn.Parameter(
        torch.Tensor(offset_bias).reshape(8))

    offset = conv_offset(x)

    model = DeformConv2d(in_channels, out_channels, kernel_size, stride,
                         padding, dilation, groups, deform_groups)

    model.weight.data = torch.nn.Parameter(
        torch.Tensor(deform_weight).reshape(1, 1, 2, 2))

    with torch.no_grad():
        torch.onnx.export(
            model, (x, offset),
            onnx_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            input_names=['input', 'offset'],
            opset_version=11)

    session_options = rt.SessionOptions()
    if os.path.exists(ort_custom_op_path):
        session_options.register_custom_ops_library(ort_custom_op_path)

    # compute onnx_output
    sess = rt.InferenceSession(onnx_file, session_options)
    onnx_output = sess.run(
        None, {
            'input': x.cpu().detach().numpy(),
            'offset': offset.cpu().detach().numpy(),
        })[0]

    # compute pytorch_output
    with torch.no_grad():
        pytorch_output = model(x, offset).cpu()
    # allclose
    assert np.allclose(pytorch_output, onnx_output, atol=1e-3)