cnn.md 19.2 KB
Newer Older
1
2
## CNN

ChaseMonsterAway's avatar
ChaseMonsterAway committed
3
We provide some building bricks for CNNs, including layer building, module bundles and weight initialization.
Kai Chen's avatar
Kai Chen committed
4
5
6
7
8
9
10
11
12
13
14

### Layer building

We may need to try different layers of the same type when running experiments,
but do not want to modify the code from time to time.
Here we provide some layer building methods to construct layers from a dict,
which can be written in configs or specified via command line arguments.

#### Usage

A simplest example is
Kai Chen's avatar
Kai Chen committed
15

Kai Chen's avatar
Kai Chen committed
16
17
```python
cfg = dict(type='Conv3d')
ftbabi's avatar
ftbabi committed
18
layer = build_conv_layer(cfg, in_channels=3, out_channels=8, kernel_size=3)
Kai Chen's avatar
Kai Chen committed
19
20
21
22
```

- `build_conv_layer`: Supported types are Conv1d, Conv2d, Conv3d, Conv (alias for Conv2d).
- `build_norm_layer`: Supported types are BN1d, BN2d, BN3d, BN (alias for BN2d), SyncBN, GN, LN, IN1d, IN2d, IN3d, IN (alias for IN2d).
ftbabi's avatar
ftbabi committed
23
- `build_activation_layer`: Supported types are ReLU, LeakyReLU, PReLU, RReLU, ReLU6, ELU, Sigmoid, Tanh, GELU.
Kai Chen's avatar
Kai Chen committed
24
25
26
27
28
29
30
31
32
- `build_upsample_layer`: Supported types are nearest, bilinear, deconv, pixel_shuffle.
- `build_padding_layer`: Supported types are zero, reflect, replicate.

#### Extension

We also allow extending the building methods with custom layers and operators.

1. Write and register your own module.

33
34
   ```python
   from mmcv.cnn import UPSAMPLE_LAYERS
Kai Chen's avatar
Kai Chen committed
35

36
37
   @UPSAMPLE_LAYERS.register_module()
   class MyUpsample:
Kai Chen's avatar
Kai Chen committed
38

39
40
       def __init__(self, scale_factor):
           pass
Kai Chen's avatar
Kai Chen committed
41

42
43
44
       def forward(self, x):
           pass
   ```
Kai Chen's avatar
Kai Chen committed
45
46
47

2. Import `MyUpsample` somewhere (e.g., in `__init__.py`) and then use it.

48
49
50
51
   ```python
   cfg = dict(type='MyUpsample', scale_factor=2)
   layer = build_upsample_layer(cfg)
   ```
Kai Chen's avatar
Kai Chen committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

### Module bundles

We also provide common module bundles to facilitate the network construction.
`ConvModule` is a bundle of convolution, normalization and activation layers,
please refer to the [api](api.html#mmcv.cnn.ConvModule) for details.

```python
# conv + bn + relu
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='BN'))
# conv + gn + relu
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='GN', num_groups=2))
# conv + relu
conv = ConvModule(3, 8, 2)
# conv
conv = ConvModule(3, 8, 2, act_cfg=None)
# conv + leaky relu
conv = ConvModule(3, 8, 3, padding=1, act_cfg=dict(type='LeakyReLU'))
# bn + conv + relu
conv = ConvModule(
    3, 8, 2, norm_cfg=dict(type='BN'), order=('norm', 'conv', 'act'))
```

### Weight initialization

Ty Feng's avatar
Ty Feng committed
77
> Implementation details are available at [mmcv/cnn/utils/weight_init.py](../../mmcv/cnn/utils/weight_init.py)
Kai Chen's avatar
Kai Chen committed
78

79
80
81
82
83
During training, a proper initialization strategy is beneficial to speed up the
training or obtain a higher performance. In MMCV, we provide some commonly used
methods for initializing modules like `nn.Conv2d`. Of course, we also provide
high-level APIs for initializing models containing one or more
modules.
Kai Chen's avatar
Kai Chen committed
84

85
#### Initialization functions
Kai Chen's avatar
Kai Chen committed
86

87
88
89
90
91
92
93
94
Initialize a `nn.Module` such as `nn.Conv2d`, `nn.Linear` in a functional way.

We provide the following initialization methods.

- constant_init

  Initialize module parameters with constant values.

95
96
97
98
99
100
101
102
  ```python
  >>> import torch.nn as nn
  >>> from mmcv.cnn import constant_init
  >>> conv1 = nn.Conv2d(3, 3, 1)
  >>> # constant_init(module, val, bias=0)
  >>> constant_init(conv1, 1, 0)
  >>> conv1.weight
  ```
103
104
105
106
107
108

- xavier_init

  Initialize module parameters with values according to the method
  described in [Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)](http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf)

109
110
111
112
113
114
115
  ```python
  >>> import torch.nn as nn
  >>> from mmcv.cnn import xavier_init
  >>> conv1 = nn.Conv2d(3, 3, 1)
  >>> # xavier_init(module, gain=1, bias=0, distribution='normal')
  >>> xavier_init(conv1, distribution='normal')
  ```
116
117
118
119
120

- normal_init

  Initialize module parameters with the values drawn from a normal distribution.

121
122
123
124
125
126
127
  ```python
  >>> import torch.nn as nn
  >>> from mmcv.cnn import normal_init
  >>> conv1 = nn.Conv2d(3, 3, 1)
  >>> # normal_init(module, mean=0, std=1, bias=0)
  >>> normal_init(conv1, std=0.01, bias=0)
  ```
128
129
130
131
132

- uniform_init

  Initialize module parameters with values drawn from a uniform distribution.

133
134
135
136
137
138
139
  ```python
  >>> import torch.nn as nn
  >>> from mmcv.cnn import uniform_init
  >>> conv1 = nn.Conv2d(3, 3, 1)
  >>> # uniform_init(module, a=0, b=1, bias=0)
  >>> uniform_init(conv1, a=0, b=1)
  ```
140
141
142

- kaiming_init

143
  Initialize module parameters with the values according to the method
144
145
146
  described in [Delving deep into rectifiers: Surpassing human-level
  performance on ImageNet classification - He, K. et al. (2015)](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)

147
148
149
150
151
152
153
  ```python
  >>> import torch.nn as nn
  >>> from mmcv.cnn import kaiming_init
  >>> conv1 = nn.Conv2d(3, 3, 1)
  >>> # kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal')
  >>> kaiming_init(conv1)
  ```
154
155
156
157
158

- caffe2_xavier_init

  The xavier initialization is implemented in caffe2, which corresponds to `kaiming_uniform_` in PyTorch.

159
160
161
162
163
164
165
  ```python
  >>> import torch.nn as nn
  >>> from mmcv.cnn import caffe2_xavier_init
  >>> conv1 = nn.Conv2d(3, 3, 1)
  >>> # caffe2_xavier_init(module, bias=0)
  >>> caffe2_xavier_init(conv1)
  ```
166
167
168
169
170

- bias_init_with_prob

  Initialize conv/fc bias value according to a given probability, as proposed in [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002.pdf).

171
172
173
174
175
176
177
  ```python
  >>> from mmcv.cnn import bias_init_with_prob
  >>> # bias_init_with_prob is proposed in Focal Loss
  >>> bias = bias_init_with_prob(0.01)
  >>> bias
  -4.59511985013459
  ```
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

#### Initializers and configs

On the basis of the initialization methods, we define the corresponding initialization classes and register them to `INITIALIZERS`, so we can
use the configuration to initialize the model.

We provide the following initialization classes.

- ConstantInit
- XavierInit
- NormalInit
- UniformInit
- KaimingInit
- Caffe2XavierInit
- PretrainedInit

Let us introduce the usage of `initialize` in detail.

1. Initialize model by `layer` key

198
   If we only define `layer`, it just initialize the layer in `layer` key.
199

200
   NOTE: Value of `layer` key is the class name with attributes weights and bias of Pytorch, so `MultiheadAttention layer` is not supported.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

- Define `layer` key for initializing module with same configuration.

  ```python
  import torch.nn as nn
  from mmcv.cnn import initialize

  class FooNet(nn.Module):
      def __init__(self):
          super().__init__()
          self.feat = nn.Conv1d(3, 1, 3)
          self.reg = nn.Conv2d(3, 3, 3)
          self.cls = nn.Linear(1, 2)

  model = FooNet()
  init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
  # initialize whole module with same configuration
  initialize(model, init_cfg)
  # model.feat.weight
  # Parameter containing:
  # tensor([[[1., 1., 1.],
  #          [1., 1., 1.],
  #          [1., 1., 1.]]], requires_grad=True)
  ```

- Define `layer` key for initializing layer with different configurations.

  ```python
  import torch.nn as nn
  from mmcv.cnn.utils import initialize

  class FooNet(nn.Module):
      def __init__(self):
          super().__init__()
          self.feat = nn.Conv1d(3, 1, 3)
          self.reg = nn.Conv2d(3, 3, 3)
          self.cls = nn.Linear(1,2)

  model = FooNet()
  init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
              dict(type='Constant', layer='Conv2d', val=2),
              dict(type='Constant', layer='Linear', val=3)]
  # nn.Conv1d will be initialized with dict(type='Constant', val=1)
  # nn.Conv2d will be initialized with dict(type='Constant', val=2)
  # nn.Linear will be initialized with dict(type='Constant', val=3)
  initialize(model, init_cfg)
  # model.reg.weight
  # Parameter containing:
  # tensor([[[[2., 2., 2.],
  #           [2., 2., 2.],
  #           [2., 2., 2.]],
  #          ...,
  #          [[2., 2., 2.],
  #           [2., 2., 2.],
  #           [2., 2., 2.]]]], requires_grad=True)
  ```

2. Initialize model by `override` key

- When initializing some specific part with its attribute name, we can use `override` key, and the value in `override` will ignore the value in init_cfg.

262
263
264
265
266
267
268
269
270
271
272
273
  ```python
  import torch.nn as nn
  from mmcv.cnn import initialize

  class FooNet(nn.Module):
      def __init__(self):
          super().__init__()
          self.feat = nn.Conv1d(3, 1, 3)
          self.reg = nn.Conv2d(3, 3, 3)
          self.cls = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2))

  # if we would like to initialize model's weights as 1 and bias as 2
Reza's avatar
Reza committed
274
  # but weight in `reg` as 3 and bias 4, we can use override key
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
  model = FooNet()
  init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'], val=1, bias=2,
                  override=dict(type='Constant', name='reg', val=3, bias=4))
  # self.feat and self.cls will be initialized with dict(type='Constant', val=1, bias=2)
  # The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4)
  initialize(model, init_cfg)
  # model.reg.weight
  # Parameter containing:
  # tensor([[[[3., 3., 3.],
  #           [3., 3., 3.],
  #           [3., 3., 3.]],
  #           ...,
  #           [[3., 3., 3.],
  #            [3., 3., 3.],
  #            [3., 3., 3.]]]], requires_grad=True)
  ```
291
292
293

- If `layer` is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted.

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
  ```python
  model = FooNet()
  init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg'))
  # self.feat and self.cls will be initialized by Pytorch
  # The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2)
  initialize(model, init_cfg)
  # model.reg.weight
  # Parameter containing:
  # tensor([[[[1., 1., 1.],
  #           [1., 1., 1.],
  #           [1., 1., 1.]],
  #           ...,
  #           [[1., 1., 1.],
  #            [1., 1., 1.],
  #            [1., 1., 1.]]]], requires_grad=True)
  ```
310
311
312
313
314

- If we don't define `layer` key or `override` key, it will not initialize anything.

- Invalid usage

315
316
317
318
319
320
321
322
323
324
325
  ```python
  # It is invalid that override don't have name key
  init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'],
                  val=1, bias=2,
                  override=dict(type='Constant', val=3, bias=4))

  # It is also invalid that override has name and other args except type
  init_cfg = dict(type='Constant', layer=['Conv1d','Conv2d'],
                  val=1, bias=2,
                  override=dict(name='reg', val=3, bias=4))
  ```
326
327
328

3. Initialize model with the pretrained model

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
   ```python
   import torch.nn as nn
   import torchvision.models as models
   from mmcv.cnn import initialize

   # initialize model with pretrained model
   model = models.resnet50()
   # model.conv1.weight
   # Parameter containing:
   # tensor([[[[-6.7435e-03, -2.3531e-02, -9.0143e-03,  ..., -2.1245e-03,
   #            -1.8077e-03,  3.0338e-03],
   #           [-1.2603e-02, -2.7831e-02,  2.3187e-02,  ..., -1.5793e-02,
   #             1.1655e-02,  4.5889e-03],
   #           [-3.7916e-02,  1.2014e-02,  1.3815e-02,  ..., -4.2651e-03,
   #             1.7314e-02, -9.9998e-03],
   #           ...,

   init_cfg = dict(type='Pretrained',
                   checkpoint='torchvision://resnet50')
   initialize(model, init_cfg)
   # model.conv1.weight
   # Parameter containing:
   # tensor([[[[ 1.3335e-02,  1.4664e-02, -1.5351e-02,  ..., -4.0896e-02,
   #            -4.3034e-02, -7.0755e-02],
   #           [ 4.1205e-03,  5.8477e-03,  1.4948e-02,  ...,  2.2060e-03,
   #            -2.0912e-02, -3.8517e-02],
   #           [ 2.2331e-02,  2.3595e-02,  1.6120e-02,  ...,  1.0281e-01,
   #             6.2641e-02,  5.1977e-02],
   #           ...,

   # initialize weights of a sub-module with the specific part of a pretrained model by using 'prefix'
   model = models.resnet50()
   url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\
         'retinanet_r50_fpn_1x_coco/'\
         'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth'
   init_cfg = dict(type='Pretrained',
                   checkpoint=url, prefix='backbone.')
   initialize(model, init_cfg)
   ```
368

369
4. Initialize model inherited from BaseModule, Sequential, ModuleList, ModuleDict
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
   `BaseModule` is inherited from `torch.nn.Module`, and the only different between them is that `BaseModule` implements `init_weights()`.

   `Sequential` is inherited from `BaseModule` and `torch.nn.Sequential`.

   `ModuleList` is inherited from `BaseModule` and `torch.nn.ModuleList`.

   `ModuleDict` is inherited from `BaseModule` and `torch.nn.ModuleDict`.

   ```python
   import torch.nn as nn
   from mmcv.runner import BaseModule, Sequential, ModuleList, ModuleDict

   class FooConv1d(BaseModule):

       def __init__(self, init_cfg=None):
           super().__init__(init_cfg)
           self.conv1d = nn.Conv1d(4, 1, 4)

       def forward(self, x):
           return self.conv1d(x)

   class FooConv2d(BaseModule):

       def __init__(self, init_cfg=None):
           super().__init__(init_cfg)
           self.conv2d = nn.Conv2d(3, 1, 3)

       def forward(self, x):
           return self.conv2d(x)

   # BaseModule
   init_cfg = dict(type='Constant', layer='Conv1d', val=0., bias=1.)
   model = FooConv1d(init_cfg)
   model.init_weights()
   # model.conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #        [0., 0., 0., 0.],
   #        [0., 0., 0., 0.],
   #        [0., 0., 0., 0.]]], requires_grad=True)

   # Sequential
   init_cfg1 = dict(type='Constant', layer='Conv1d', val=0., bias=1.)
   init_cfg2 = dict(type='Constant', layer='Conv2d', val=2., bias=3.)
   model1 = FooConv1d(init_cfg1)
   model2 = FooConv2d(init_cfg2)
   seq_model = Sequential(model1, model2)
   seq_model.init_weights()
   # seq_model[0].conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.]]], requires_grad=True)
   # seq_model[1].conv2d.weight
   # Parameter containing:
   # tensor([[[[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]],
   #         ...,
   #          [[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]]]], requires_grad=True)

   # inner init_cfg has higher priority
   model1 = FooConv1d(init_cfg1)
   model2 = FooConv2d(init_cfg2)
   init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.)
   seq_model = Sequential(model1, model2, init_cfg=init_cfg)
   seq_model.init_weights()
   # seq_model[0].conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.]]], requires_grad=True)
   # seq_model[1].conv2d.weight
   # Parameter containing:
   # tensor([[[[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]],
   #         ...,
   #          [[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]]]], requires_grad=True)

   # ModuleList
   model1 = FooConv1d(init_cfg1)
   model2 = FooConv2d(init_cfg2)
   modellist = ModuleList([model1, model2])
   modellist.init_weights()
   # modellist[0].conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.]]], requires_grad=True)
   # modellist[1].conv2d.weight
   # Parameter containing:
   # tensor([[[[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]],
   #         ...,
   #          [[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]]]], requires_grad=True)

   # inner init_cfg has higher priority
   model1 = FooConv1d(init_cfg1)
   model2 = FooConv2d(init_cfg2)
   init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.)
   modellist = ModuleList([model1, model2], init_cfg=init_cfg)
   modellist.init_weights()
   # modellist[0].conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.]]], requires_grad=True)
   # modellist[1].conv2d.weight
   # Parameter containing:
   # tensor([[[[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]],
   #         ...,
   #          [[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]]]], requires_grad=True)

   # ModuleDict
   model1 = FooConv1d(init_cfg1)
   model2 = FooConv2d(init_cfg2)
   modeldict = ModuleDict(dict(model1=model1, model2=model2))
   modeldict.init_weights()
   # modeldict['model1'].conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.]]], requires_grad=True)
   # modeldict['model2'].conv2d.weight
   # Parameter containing:
   # tensor([[[[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]],
   #         ...,
   #          [[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]]]], requires_grad=True)

   # inner init_cfg has higher priority
   model1 = FooConv1d(init_cfg1)
   model2 = FooConv2d(init_cfg2)
   init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.)
   modeldict = ModuleDict(dict(model1=model1, model2=model2), init_cfg=init_cfg)
   modeldict.init_weights()
   # modeldict['model1'].conv1d.weight
   # Parameter containing:
   # tensor([[[0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.],
   #         [0., 0., 0., 0.]]], requires_grad=True)
   # modeldict['model2'].conv2d.weight
   # Parameter containing:
   # tensor([[[[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]],
   #         ...,
   #          [[2., 2., 2.],
   #           [2., 2., 2.],
   #           [2., 2., 2.]]]], requires_grad=True)
   ```
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

### Model Zoo

Besides torchvision pre-trained models, we also provide pre-trained models of following CNN:

- VGG Caffe
- ResNet Caffe
- ResNeXt
- ResNet with Group Normalization
- ResNet with Group Normalization and Weight Standardization
- HRNetV2
- Res2Net
- RegNet

#### Model URLs in JSON

The model zoo links in MMCV are managed by JSON files.
The json file consists of key-value pair of model name and its url or path.
An example json file could be like:

```json
{
    "model_a": "https://example.com/models/model_a_9e5bac.pth",
    "model_b": "pretrain/model_b_ab3ef2c.pth"
}
```

Kai Chen's avatar
Kai Chen committed
570
The default links of the pre-trained models hosted on OpenMMLab AWS could be found [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json).
571
572
573
574
575
576
577
578
579
580
581

You may override default links by putting `open-mmlab.json` under `MMCV_HOME`. If `MMCV_HOME` is not find in the environment, `~/.cache/mmcv` will be used by default. You may `export MMCV_HOME=/your/path` to use your own path.

The external json files will be merged into default one. If the same key presents in both external json and default json, the external one will be used.

#### Load Checkpoint

The following types are supported for `filename` argument of `mmcv.load_checkpoint()`.

- filepath: The filepath of the checkpoint.
- `http://xxx` and `https://xxx`: The link to download the checkpoint. The `SHA256` postfix should be contained in the filename.
lizz's avatar
lizz committed
582
- `torchvision://xxx`: The model links in `torchvision.models`.Please refer to [torchvision](https://pytorch.org/docs/stable/torchvision/models.html) for details.
583
- `open-mmlab://xxx`: The model links or filepath provided in default and additional json files.