tensorrt_plugin.md 6.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# TensorRT Plugins for custom operators in MMCV (Experimental)

<!-- TOC -->

- [TensorRT Plugins for custom operators in MMCV (Experimental)](#tensorrt-plugins-for-custom-operators-in-mmcv-experimental)
  - [Introduction](#introduction)
  - [List of TensorRT plugins supported in MMCV](#list-of-tensorrt-plugins-supported-in-mmcv)
  - [How to build TensorRT plugins in MMCV](#how-to-build-tensorrt-plugins-in-mmcv)
    - [Prerequisite](#prerequisite)
    - [Build on Linux](#build-on-linux)
  - [Create TensorRT engine and run inference in python](#create-tensorrt-engine-and-run-inference-in-python)
  - [How to add a TensorRT plugin for custom op in MMCV](#how-to-add-a-tensorrt-plugin-for-custom-op-in-mmcv)
    - [Main procedures](#main-procedures)
    - [Reminders](#reminders)
  - [Known Issues](#known-issues)
  - [References](#references)

<!-- TOC -->

## Introduction

**NVIDIA TensorRT** is a software development kit(SDK) for high-performance inference of deep learning models. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. Please check its [developer's website](https://developer.nvidia.com/tensorrt) for more information.
To ease the deployment of trained models with custom operators from `mmcv.ops` using TensorRT, a series of TensorRT plugins are included in MMCV.

## List of TensorRT plugins supported in MMCV

27
28
29
30
31
32
33
|   ONNX Operator   |                         TensorRT Plugin                         | MMCV Releases |
| :---------------: | :-------------------------------------------------------------: | :-----------: |
|   MMCVRoiAlign    |      [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign)      |     1.2.6     |
|     ScatterND     |         [ScatterND](./tensorrt_custom_ops.md#scatternd)         |     1.2.6     |
| NonMaxSuppression | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression) |     1.3.0     |
| MMCVDeformConv2d  |  [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d)  |     1.3.0     |
|   grid_sampler    |      [grid_sampler](./tensorrt_custom_ops.md#grid-sampler)      |    master     |
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Notes

- All plugins listed above are developed on TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0

## How to build TensorRT plugins in MMCV

### Prerequisite

- Clone repository

```bash
git clone https://github.com/open-mmlab/mmcv.git
```

- Install TensorRT

Download the corresponding TensorRT build from [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download).

For example, for Ubuntu 16.04 on x86-64 with cuda-10.2, the downloaded file is `TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`.

Then, install as below:

```bash
cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz
export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib
```

Install python packages: tensorrt, graphsurgeon, onnx-graphsurgeon

```bash
pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl
pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl
pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl
```

For more detailed infomation of installing TensorRT using tar, please refer to [Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar).

### Build on Linux

```bash
cd mmcv # to MMCV root directory
MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e .
```

## Create TensorRT engine and run inference in python

Here is an example.

```python
import torch
import onnx

from mmcv.tensorrt import (TRTWraper, onnx2trt, save_trt_engine,
                                   is_tensorrt_plugin_loaded)

assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv'

onnx_file = 'sample.onnx'
trt_file = 'sample.trt'
onnx_model = onnx.load(onnx_file)

# Model input
inputs = torch.rand(1, 3, 224, 224).cuda()
# Model input shape info
opt_shape_dict = {
    'input': [list(inputs.shape),
              list(inputs.shape),
              list(inputs.shape)]
}

# Create TensorRT engine
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
    onnx_model,
    opt_shape_dict,
    max_workspace_size=max_workspace_size)

# Save TensorRT engine
save_trt_engine(trt_engine, trt_file)

# Run inference with TensorRT
trt_model = TRTWraper(trt_file, ['input'], ['output'])

with torch.no_grad():
    trt_outputs = trt_model({'input': inputs})
    output = trt_outputs['output']

```

## How to add a TensorRT plugin for custom op in MMCV

### Main procedures

Below are the main steps:

1. Add c++ header file
2. Add c++ source file
3. Add cuda kernel file
4. Register plugin in `trt_plugin.cpp`
5. Add unit test in `tests/test_ops/test_tensorrt.py`

**Take RoIAlign plugin `roi_align` for example.**

1. Add header `trt_roi_align.hpp` to TensorRT include directory `mmcv/ops/csrc/tensorrt/`
2. Add source `trt_roi_align.cpp` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
3. Add cuda kernel `trt_roi_align_kernel.cu` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
4. Register `roi_align` plugin in [trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp)

    ```c++
    #include "trt_plugin.hpp"

    #include "trt_roi_align.hpp"

    REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);

    extern "C" {
    bool initLibMMCVInferPlugins() { return true; }
    }  // extern "C"
    ```

5. Add unit test into `tests/test_ops/test_tensorrt.py`
   Check [here](https://github.com/open-mmlab/mmcv/blob/master/tests/test_ops/test_tensorrt.py) for examples.

### Reminders

- Some of the [custom ops](https://mmcv.readthedocs.io/en/latest/ops.html) in `mmcv` have their cuda implementations, which could be refered.

## Known Issues

- None

## References

- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html)
- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT)
- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt)
- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html)
- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html)