test_transformer.py 5.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import pytest
import torch

from mmcv.cnn.bricks.drop import DropPath
from mmcv.cnn.bricks.transformer import (FFN, BaseTransformerLayer,
                                         MultiheadAttention,
                                         TransformerLayerSequence)


def test_multiheadattention():
    MultiheadAttention(
        embed_dims=5,
        num_heads=5,
        attn_drop=0,
        proj_drop=0,
        dropout_layer=dict(type='Dropout', drop_prob=0.),
        batch_first=True)
    batch_dim = 2
    embed_dim = 5
    num_query = 100
    attn_batch_first = MultiheadAttention(
        embed_dims=5,
        num_heads=5,
        attn_drop=0,
        proj_drop=0,
        dropout_layer=dict(type='DropPath', drop_prob=0.),
        batch_first=True)

    attn_query_first = MultiheadAttention(
        embed_dims=5,
        num_heads=5,
        attn_drop=0,
        proj_drop=0,
        dropout_layer=dict(type='DropPath', drop_prob=0.),
        batch_first=False)

    param_dict = dict(attn_query_first.named_parameters())
    for n, v in attn_batch_first.named_parameters():
        param_dict[n].data = v.data

    input_batch_first = torch.rand(batch_dim, num_query, embed_dim)
    input_query_first = input_batch_first.transpose(0, 1)

    assert torch.allclose(
        attn_query_first(input_query_first).sum(),
        attn_batch_first(input_batch_first).sum())

    key_batch_first = torch.rand(batch_dim, num_query, embed_dim)
    key_query_first = key_batch_first.transpose(0, 1)

    assert torch.allclose(
        attn_query_first(input_query_first, key_query_first).sum(),
        attn_batch_first(input_batch_first, key_batch_first).sum())

    identity = torch.ones_like(input_query_first)

    # check deprecated arguments can be used normally

    assert torch.allclose(
        attn_query_first(
            input_query_first, key_query_first, residual=identity).sum(),
        attn_batch_first(input_batch_first, key_batch_first).sum() +
        identity.sum() - input_batch_first.sum())

    assert torch.allclose(
        attn_query_first(
            input_query_first, key_query_first, identity=identity).sum(),
        attn_batch_first(input_batch_first, key_batch_first).sum() +
        identity.sum() - input_batch_first.sum())

    attn_query_first(
        input_query_first, key_query_first, identity=identity).sum(),


def test_ffn():
    with pytest.raises(AssertionError):
        # num_fcs should be no less than 2
        FFN(num_fcs=1)
    FFN(dropout=0, add_residual=True)
    ffn = FFN(dropout=0, add_identity=True)

    input_tensor = torch.rand(2, 20, 256)
    input_tensor_nbc = input_tensor.transpose(0, 1)
    assert torch.allclose(ffn(input_tensor).sum(), ffn(input_tensor_nbc).sum())
    residual = torch.rand_like(input_tensor)
    torch.allclose(
        ffn(input_tensor, residual=residual).sum(),
        ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())

    torch.allclose(
        ffn(input_tensor, identity=residual).sum(),
        ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())


def test_basetransformerlayer():
    attn_cfgs = dict(type='MultiheadAttention', embed_dims=256, num_heads=8),
    feedforward_channels = 2048
    ffn_dropout = 0.1
    operation_order = ('self_attn', 'norm', 'ffn', 'norm')

    # test deprecated_args
    baselayer = BaseTransformerLayer(
        attn_cfgs=attn_cfgs,
        feedforward_channels=feedforward_channels,
        ffn_dropout=ffn_dropout,
        operation_order=operation_order)
    assert baselayer.batch_first is False
    assert baselayer.ffns[0].feedforward_channels == feedforward_channels

    attn_cfgs = dict(type='MultiheadAttention', num_heads=8, embed_dims=256),
    feedforward_channels = 2048
    ffn_dropout = 0.1
    operation_order = ('self_attn', 'norm', 'ffn', 'norm')
    baselayer = BaseTransformerLayer(
        attn_cfgs=attn_cfgs,
        feedforward_channels=feedforward_channels,
        ffn_dropout=ffn_dropout,
        operation_order=operation_order,
        batch_first=True)
    assert baselayer.attentions[0].batch_first
    in_tensor = torch.rand(2, 10, 256)
    baselayer(in_tensor)


def test_transformerlayersequence():
    squeue = TransformerLayerSequence(
        num_layers=6,
        transformerlayers=dict(
            type='BaseTransformerLayer',
            attn_cfgs=[
                dict(
                    type='MultiheadAttention',
                    embed_dims=256,
                    num_heads=8,
                    dropout=0.1),
                dict(type='MultiheadAttention', embed_dims=256, num_heads=4)
            ],
            feedforward_channels=1024,
            ffn_dropout=0.1,
            operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn',
                             'norm')))
    assert len(squeue.layers) == 6
    assert squeue.pre_norm is False
    with pytest.raises(AssertionError):
        # if transformerlayers is a list, len(transformerlayers)
        # should be equal to num_layers
        TransformerLayerSequence(
            num_layers=6,
            transformerlayers=[
                dict(
                    type='BaseTransformerLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',
                            embed_dims=256,
                            num_heads=8,
                            dropout=0.1),
                        dict(type='MultiheadAttention', embed_dims=256)
                    ],
                    feedforward_channels=1024,
                    ffn_dropout=0.1,
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm'))
            ])


def test_drop_path():
    drop_path = DropPath(drop_prob=0)
    test_in = torch.rand(2, 3, 4, 5)
    assert test_in is drop_path(test_in)

    drop_path = DropPath(drop_prob=0.1)
    drop_path.training = False
    test_in = torch.rand(2, 3, 4, 5)
    assert test_in is drop_path(test_in)
    drop_path.training = True
    assert test_in is not drop_path(test_in)