data_process.md 7.08 KB
Newer Older
Zaida Zhou's avatar
Zaida Zhou committed
1
2
3
## Data Process

### Image
Kai Chen's avatar
Kai Chen committed
4

youkaichao's avatar
youkaichao committed
5
This module provides some image processing methods, which requires `opencv` to be installed.
Kai Chen's avatar
Kai Chen committed
6

Zaida Zhou's avatar
Zaida Zhou committed
7
#### Read/Write/Show
Kai Chen's avatar
Kai Chen committed
8

Kai Chen's avatar
Kai Chen committed
9
10
11
12
13
14
15
To read or write images files, use `imread` or `imwrite`.

```python
import mmcv

img = mmcv.imread('test.jpg')
img = mmcv.imread('test.jpg', flag='grayscale')
Zaida Zhou's avatar
Zaida Zhou committed
16
img_ = mmcv.imread(img)  # nothing will happen, img_ = img
Kai Chen's avatar
Kai Chen committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
mmcv.imwrite(img, 'out.jpg')
```

To read images from bytes

```python
with open('test.jpg', 'rb') as f:
    data = f.read()
img = mmcv.imfrombytes(data)
```

To show an image file or a loaded image

```python
mmcv.imshow('tests/data/color.jpg')
lizz's avatar
lizz committed
32
# this is equivalent to
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38

for i in range(10):
    img = np.random.randint(256, size=(100, 100, 3), dtype=np.uint8)
    mmcv.imshow(img, win_name='test image', wait_time=200)
```

Zaida Zhou's avatar
Zaida Zhou committed
39
#### Color space conversion
Kai Chen's avatar
Kai Chen committed
40

Kai Chen's avatar
Kai Chen committed
41
Supported conversion methods:
Kai Chen's avatar
Kai Chen committed
42

Kai Chen's avatar
Kai Chen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
- bgr2gray
- gray2bgr
- bgr2rgb
- rgb2bgr
- bgr2hsv
- hsv2bgr

```python
img = mmcv.imread('tests/data/color.jpg')
img1 = mmcv.bgr2rgb(img)
img2 = mmcv.rgb2gray(img1)
img3 = mmcv.bgr2hsv(img)
```

Zaida Zhou's avatar
Zaida Zhou committed
57
#### Resize
Kai Chen's avatar
Kai Chen committed
58

Kai Chen's avatar
Kai Chen committed
59
60
61
There are three resize methods. All `imresize_*` methods have an argument `return_scale`,
if this argument is `False`, then the return value is merely the resized image, otherwise
is a tuple `(resized_img, scale)`.
Kai Chen's avatar
Kai Chen committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

```python
# resize to a given size
mmcv.imresize(img, (1000, 600), return_scale=True)

# resize to the same size of another image
mmcv.imresize_like(img, dst_img, return_scale=False)

# resize by a ratio
mmcv.imrescale(img, 0.5)

# resize so that the max edge no longer than 1000, short edge no longer than 800
# without changing the aspect ratio
mmcv.imrescale(img, (1000, 800))
```

Zaida Zhou's avatar
Zaida Zhou committed
78
#### Rotate
Kai Chen's avatar
Kai Chen committed
79

Kai Chen's avatar
Kai Chen committed
80
81
82
83
84
To rotate an image by some angle, use `imrotate`. The center can be specified,
which is the center of original image by default. There are two modes of rotating,
one is to keep the image size unchanged so that some parts of the image will be
cropped after rotating, the other is to extend the image size to fit the rotated
image.
Kai Chen's avatar
Kai Chen committed
85
86
87

```python
img = mmcv.imread('tests/data/color.jpg')
Kai Chen's avatar
Kai Chen committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

# rotate the image clockwise by 30 degrees.
img_ = mmcv.imrotate(img, 30)

# rotate the image counterclockwise by 90 degrees.
img_ = mmcv.imrotate(img, -90)

# rotate the image clockwise by 30 degrees, and rescale it by 1.5x at the same time.
img_ = mmcv.imrotate(img, 30, scale=1.5)

# rotate the image clockwise by 30 degrees, with (100, 100) as the center.
img_ = mmcv.imrotate(img, 30, center=(100, 100))

# rotate the image clockwise by 30 degrees, and extend the image size.
img_ = mmcv.imrotate(img, 30, auto_bound=True)
```

Zaida Zhou's avatar
Zaida Zhou committed
105
#### Flip
Kai Chen's avatar
Kai Chen committed
106

Kai Chen's avatar
Kai Chen committed
107
108
109
110
111
112
113
114
115
116
To flip an image, use `imflip`.

```python
img = mmcv.imread('tests/data/color.jpg')

# flip the image horizontally
mmcv.imflip(img)

# flip the image vertically
mmcv.imflip(img, direction='vertical')
Kai Chen's avatar
Kai Chen committed
117
118
```

Zaida Zhou's avatar
Zaida Zhou committed
119
#### Crop
Kai Chen's avatar
Kai Chen committed
120

Kai Chen's avatar
Kai Chen committed
121
`imcrop` can crop the image with one or some regions, represented as (x1, y1, x2, y2).
Kai Chen's avatar
Kai Chen committed
122
123
124
125
126

```python
import mmcv
import numpy as np

127
img = mmcv.imread('tests/data/color.jpg')
Kai Chen's avatar
Kai Chen committed
128
129
130

# crop the region (10, 10, 100, 120)
bboxes = np.array([10, 10, 100, 120])
131
patch = mmcv.imcrop(img, bboxes)
Kai Chen's avatar
Kai Chen committed
132
133

# crop two regions (10, 10, 100, 120) and (0, 0, 50, 50)
Kai Chen's avatar
Kai Chen committed
134
bboxes = np.array([[10, 10, 100, 120], [0, 0, 50, 50]])
135
patches = mmcv.imcrop(img, bboxes)
Kai Chen's avatar
Kai Chen committed
136

Kai Chen's avatar
Kai Chen committed
137
# crop two regions, and rescale the patches by 1.2x
138
patches = mmcv.imcrop(img, bboxes, scale_ratio=1.2)
Kai Chen's avatar
Kai Chen committed
139
140
```

Zaida Zhou's avatar
Zaida Zhou committed
141
#### Padding
Kai Chen's avatar
Kai Chen committed
142

Kai Chen's avatar
Kai Chen committed
143
144
There are two methods `impad` and `impad_to_multiple` to pad an image to the
specific size with given values.
Kai Chen's avatar
Kai Chen committed
145
146

```python
147
img = mmcv.imread('tests/data/color.jpg')
Kai Chen's avatar
Kai Chen committed
148
149

# pad the image to (1000, 1200) with all zeros
150
img_ = mmcv.impad(img, shape=(1000, 1200), pad_val=0)
Kai Chen's avatar
Kai Chen committed
151
152

# pad the image to (1000, 1200) with different values for three channels.
153
154
155
156
157
img_ = mmcv.impad(img, shape=(1000, 1200), pad_val=[100, 50, 200])

# pad the image on left, right, top, bottom borders with all zeros
img_ = mmcv.impad(img, padding=(10, 20, 30, 40), pad_val=0)

Kai Chen's avatar
Kai Chen committed
158
# pad the image on left, right, top, bottom borders with different values
159
160
# for three channels.
img_ = mmcv.impad(img, padding=(10, 20, 30, 40), pad_val=[100, 50, 200])
Kai Chen's avatar
Kai Chen committed
161
162
163

# pad an image so that each edge is a multiple of some value.
img_ = mmcv.impad_to_multiple(img, 32)
164
```
Zaida Zhou's avatar
Zaida Zhou committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

### Video

This module provides the following functionalities.

- A `VideoReader` class with friendly apis to read and convert videos.
- Some methods for editing (cut, concat, resize) videos.
- Optical flow read/write/warp.

#### VideoReader

The `VideoReader` class provides sequence like apis to access video frames.
It will internally cache the frames which have been visited.

```python
video = mmcv.VideoReader('test.mp4')

# obtain basic information
print(len(video))
print(video.width, video.height, video.resolution, video.fps)

# iterate over all frames
for frame in video:
    print(frame.shape)

# read the next frame
img = video.read()

# read a frame by index
img = video[100]

# read some frames
img = video[5:10]
```

To convert a video to images or generate a video from a image directory.

```python
# split a video into frames and save to a folder
video = mmcv.VideoReader('test.mp4')
video.cvt2frames('out_dir')

# generate video from frames
mmcv.frames2video('out_dir', 'test.avi')
```

#### Editing utils

There are also some methods for editing videos, which wraps the commands of ffmpeg.

```python
# cut a video clip
mmcv.cut_video('test.mp4', 'clip1.mp4', start=3, end=10, vcodec='h264')

# join a list of video clips
mmcv.concat_video(['clip1.mp4', 'clip2.mp4'], 'joined.mp4', log_level='quiet')

# resize a video with the specified size
mmcv.resize_video('test.mp4', 'resized1.mp4', (360, 240))

# resize a video with a scaling ratio of 2
mmcv.resize_video('test.mp4', 'resized2.mp4', ratio=2)
```

#### Optical flow

`mmcv` provides the following methods to operate on optical flows.

- IO
- Visualization
- Flow warpping

We provide two options to dump optical flow files: uncompressed and compressed.
The uncompressed way just dumps the floating numbers to a binary file. It is
lossless but the dumped file has a larger size.
The compressed way quantizes the optical flow to 0-255 and dumps it as a
jpeg image. The flow of x-dim and y-dim will be concatenated into a single image.

1. IO

```python
flow = np.random.rand(800, 600, 2).astype(np.float32)
# dump the flow to a flo file (~3.7M)
mmcv.flowwrite(flow, 'uncompressed.flo')
# dump the flow to a jpeg file (~230K)
# the shape of the dumped image is (800, 1200)
mmcv.flowwrite(flow, 'compressed.jpg', quantize=True, concat_axis=1)

# read the flow file, the shape of loaded flow is (800, 600, 2) for both ways
flow = mmcv.flowread('uncompressed.flo')
flow = mmcv.flowread('compressed.jpg', quantize=True, concat_axis=1)
```

2. Visualization

It is possible to visualize optical flows with `mmcv.flowshow()`.

```python
mmcv.flowshow(flow)
```

![progress](../_static/flow_visualization.png)

3. Flow warpping

```python
img1 = mmcv.imread('img1.jpg')
flow = mmcv.flowread('flow.flo')
warpped_img2 = mmcv.flow_warp(img1, flow)
```

img1 (left) and img2 (right)

![raw images](../_static/flow_raw_images.png)

optical flow (img2 -> img1)

![optical flow](../_static/flow_img2toimg1.png)

warpped image and difference with ground truth

![warpped image](../_static/flow_warp_diff.png)