symbolic.py 19.2 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
"""Modified from https://github.com/pytorch/pytorch."""
3
import os
4
import warnings
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import torch
from torch.nn.modules.utils import _pair, _single, _triple
from torch.onnx.symbolic_helper import parse_args
from torch.onnx.symbolic_registry import register_op

from .onnx_utils import symbolic_helper as sym_help


def _interpolate(name, dim, interpolate_mode):

    def symbolic_fn(g, input, output_size, *args):
        scales, align_corners = sym_help._get_interpolate_attributes(
            g, interpolate_mode, args)
        align_corners = sym_help._maybe_get_scalar(align_corners)
        transformation_mode = 'asymmetric' \
            if interpolate_mode == 'nearest' \
            else 'align_corners' if align_corners else 'pytorch_half_pixel'
        empty_tensor = g.op(
            'Constant', value_t=torch.tensor([], dtype=torch.float32))

        if scales is None:
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            if 'ONNX_BACKEND' in os.environ and os.environ[
                    'ONNX_BACKEND'] == 'TensorRT':
                input_size = input.type().sizes()
                # slice the first two dim
                input_size = input_size[:2]
                # convert output_size to int type
                output_size = sym_help._maybe_get_const(output_size, 'is')
                input_size.extend(output_size)
                output_size = g.op(
                    'Constant',
                    value_t=torch.tensor(input_size, dtype=torch.int64))
            else:
                input_size = g.op('Shape', input)
                input_size_beg = sym_help._slice_helper(
                    g, input_size, axes=[0], ends=[2], starts=[0])
                output_size = g.op(
                    'Cast',
                    output_size,
                    to_i=sym_help.cast_pytorch_to_onnx['Long'])
                output_size = g.op(
                    'Concat', input_size_beg, output_size, axis_i=0)
49
50
51
52
53
54
            scales = g.op(
                'Constant', value_t=torch.tensor([], dtype=torch.float32))
            return g.op(
                'Resize',
                input,
                empty_tensor,
55
                # roi only takes effect with
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
                # coordinate_transformation_mode="tf_crop_and_resize"
                scales,  # scales is not needed since we are sending out_size
                output_size,
                coordinate_transformation_mode_s=transformation_mode,
                cubic_coeff_a_f=-0.75,  # only valid when mode="cubic"
                mode_s=interpolate_mode,  # nearest, linear, or cubic
                nearest_mode_s='floor')  # only valid when mode="nearest"
        else:
            return g.op(
                'Resize',
                input,
                empty_tensor,
                # roi only takes effect with
                # coordinate_transformation_mode="tf_crop_and_resize"
                scales,  # scales is not needed since we are sending out_size
                coordinate_transformation_mode_s=transformation_mode,
                cubic_coeff_a_f=-0.75,  # only valid when mode="cubic"
                mode_s=interpolate_mode,  # nearest, linear, or cubic
                nearest_mode_s='floor')  # only valid when mode="nearest"

    return symbolic_fn


upsample_nearest1d = _interpolate('upsample_nearest1d', 3, 'nearest')
upsample_nearest2d = _interpolate('upsample_nearest2d', 4, 'nearest')
upsample_nearest3d = _interpolate('upsample_nearest3d', 5, 'nearest')
upsample_linear1d = _interpolate('upsample_linear1d', 3, 'linear')
upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, 'linear')
upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, 'linear')
upsample_bicubic2d = _interpolate('upsample_bicubic2d', 4, 'cubic')


@parse_args('v', 'v', 'i', 'i', 'i', 'none')
def topk(g, self, k, dim, largest, sorted, out=None):
    return sym_help._topk_helper(
        g, self, k, dim, largest=largest, sorted=sorted, out=out)


def masked_select(g, self, mask):
95
    from torch.onnx.symbolic_opset9 import expand_as, nonzero
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    index = nonzero(g, expand_as(g, mask, self))
    return g.op('GatherND', self, index)


def _prepare_onnx_paddings(g, dim, pad):
    pad_len = torch.onnx.symbolic_opset9.size(
        g, pad, g.op('Constant', value_t=torch.tensor([0])))
    # Set extension = [0] * (dim * 2 - len(pad))
    extension = g.op(
        'Sub',
        g.op('Mul',
             g.op('Constant', value_t=torch.tensor(dim, dtype=torch.int64)),
             g.op('Constant', value_t=torch.tensor(2, dtype=torch.int64))),
        pad_len)
    pad = g.op('Cast', pad, to_i=sym_help.cast_pytorch_to_onnx['Long'])
    paddings = g.op(
        'Concat',
        pad,
        g.op(
            'ConstantOfShape',
            extension,
            value_t=torch.tensor([0], dtype=torch.int64)),
        axis_i=0)
    paddings = g.op('Reshape', paddings,
                    g.op('Constant', value_t=torch.tensor([-1, 2])))
    paddings = g.op(
        'Transpose',
        torch.onnx.symbolic_opset10.flip(g, paddings, [0]),
        perm_i=[1, 0])
    paddings = g.op('Reshape', paddings,
                    g.op('Constant', value_t=torch.tensor([-1])))
    padding_c = g.op(
        'Cast', paddings, to_i=sym_help.cast_pytorch_to_onnx['Long'])
    return padding_c


def constant_pad_nd(g, input, padding, value=None):
    mode = 'constant'
    value = sym_help._maybe_get_scalar(value)
    value = sym_help._if_scalar_type_as(g, value, input)
    pad = _prepare_onnx_paddings(g, input.type().dim(), padding)
    return g.op('Pad', input, pad, value, mode_s=mode)


def reflection_pad(g, input, padding):
    mode = 'reflect'
    paddings = _prepare_onnx_paddings(g, input.type().dim(), padding)
    return g.op('Pad', input, paddings, mode_s=mode)


reflection_pad1d = reflection_pad
reflection_pad2d = reflection_pad
reflection_pad3d = reflection_pad


def _avg_pool(name, tuple_fn):

    @parse_args('v', 'is', 'is', 'is', 'i', 'i', 'none')
    def symbolic_fn(g,
                    input,
                    kernel_size,
                    stride,
                    padding,
                    ceil_mode,
                    count_include_pad,
                    divisor_override=None):
        padding = sym_help._avgpool_helper(tuple_fn, padding, kernel_size,
                                           stride, divisor_override, name)
        if not stride:
            stride = kernel_size
        if count_include_pad:
            input = g.op(
                'Pad',
                input,
                g.op(
                    'Constant',
                    value_t=torch.tensor(((0, ) * 2 + padding) * 2)),
                mode_s='constant')
            padding = (0, ) * len(padding)
        output = g.op(
            'AveragePool',
            input,
            kernel_shape_i=tuple_fn(kernel_size),
            strides_i=tuple_fn(stride),
            pads_i=padding * 2,
            ceil_mode_i=ceil_mode)
        return output

    return symbolic_fn


avg_pool1d = _avg_pool('avg_pool1d', _single)
avg_pool2d = _avg_pool('avg_pool2d', _pair)
avg_pool3d = _avg_pool('avg_pool3d', _triple)


def _get_im2col_indices_along_dim(g, input_d, kernel_size_d, dilation_d,
                                  padding_d, stride_d):
    # Input is always 4-D (N, C, H, W)
    # Calculate indices of sliding blocks along spatial dimension
    # Slide kernel over input each dim d:
    # each dimension d ranges from 0 to
    # input[d]+2xpadding[d]-dilation[d]x(kernel_size[d]-1)
    # with steps = stride

    blocks_d = g.op('Add', input_d,
                    g.op('Constant', value_t=torch.tensor(padding_d * 2)))
    blocks_d = g.op(
        'Sub', blocks_d,
        g.op(
            'Constant',
            value_t=torch.tensor(dilation_d * (kernel_size_d - 1))))

    # Stride kernel over input and find starting indices along dim d
    blocks_d_indices = g.op('Range', g.op('Constant', value_t=torch.tensor(0)),
                            blocks_d,
                            g.op('Constant', value_t=torch.tensor(stride_d)))

    # Apply dilation on kernel and find its indices along dim d
    kernel_grid = np.arange(0, kernel_size_d * dilation_d, dilation_d)
    kernel_grid = g.op('Constant', value_t=torch.tensor([kernel_grid]))

    # Broadcast and add kernel staring positions (indices) with
    # kernel_grid along dim d, to get block indices along dim d
    blocks_d_indices = g.op(
        'Unsqueeze', blocks_d_indices, axes_i=[0])  # Reshape to [1, -1]
    kernel_mask = g.op('Reshape', kernel_grid,
                       g.op('Constant', value_t=torch.tensor([-1, 1])))
    block_mask = g.op('Add', blocks_d_indices, kernel_mask)

    return block_mask


def _get_im2col_padded_input(g, input, padding_h, padding_w):
    # Input is always 4-D tensor (N, C, H, W)
    # Padding tensor has the following format: (padding_h, padding_w)
    # Reshape the padding to follow ONNX format:
    # (dim1_begin, dim2_begin,...,dim1_end, dim2_end,...)
    pad = g.op(
        'Constant', value_t=torch.LongTensor([0, 0, padding_h, padding_w] * 2))
    return g.op('Pad', input, pad)


def _get_im2col_output_shape(g, input, kernel_h, kernel_w):
    batch_dim = size(g, input, g.op('Constant', value_t=torch.tensor(0)))
    channel_dim = size(g, input, g.op('Constant', value_t=torch.tensor(1)))
    channel_unfolded = g.op(
        'Mul', channel_dim,
        g.op('Constant', value_t=torch.tensor(kernel_h * kernel_w)))

    return g.op(
        'Concat',
        g.op('Unsqueeze', batch_dim, axes_i=[0]),
        g.op('Unsqueeze', channel_unfolded, axes_i=[0]),
        g.op('Constant', value_t=torch.tensor([-1])),
        axis_i=0)


def size(g, self, dim=None):
    if dim is None:
        return g.op('Shape', self)
    return sym_help._size_helper(g, self, dim)


@parse_args('v', 'is', 'is', 'is', 'is')
def im2col(g, input, kernel_size, dilation, padding, stride):
    # Input is always 4-D tensor (N, C, H, W)
    # All other args are int[2]

    input_h = size(g, input, g.op('Constant', value_t=torch.tensor(2)))
    input_w = size(g, input, g.op('Constant', value_t=torch.tensor(3)))

    stride_h, stride_w = stride[0], stride[1]
    padding_h, padding_w = padding[0], padding[1]
    dilation_h, dilation_w = dilation[0], dilation[1]
    kernel_h, kernel_w = kernel_size[0], kernel_size[1]

    blocks_row_indices = _get_im2col_indices_along_dim(g, input_h, kernel_h,
                                                       dilation_h, padding_h,
                                                       stride_h)
    blocks_col_indices = _get_im2col_indices_along_dim(g, input_w, kernel_w,
                                                       dilation_w, padding_w,
                                                       stride_w)

    output_shape = _get_im2col_output_shape(g, input, kernel_h, kernel_w)
    padded_input = _get_im2col_padded_input(g, input, padding_h, padding_w)

    output = g.op('Gather', padded_input, blocks_row_indices, axis_i=2)
    output = g.op('Gather', output, blocks_col_indices, axis_i=4)
    output = g.op('Transpose', output, perm_i=[0, 1, 2, 4, 3, 5])
    return g.op('Reshape', output, output_shape)


@parse_args('v', 'i')
def one_hot(g, self, num_classes):
    values = g.op('Constant', value_t=torch.LongTensor([0, 1]))
    depth = g.op('Constant', value_t=torch.LongTensor([num_classes]))
    return g.op('OneHot', self, depth, values, axis_i=-1)


@parse_args('v', 'i', 'none')
def softmax(g, input, dim, dtype=None):
    input_dim = input.type().dim()
    if input_dim:
        # TODO: remove this as onnx opset 11 spec allows negative axes
        if dim < 0:
            dim = input_dim + dim
        if input_dim == dim + 1:
            softmax = g.op('Softmax', input, axis_i=dim)
            if dtype and dtype.node().kind() != 'prim::Constant':
                parsed_dtype = sym_help._get_const(dtype, 'i', 'dtype')
                softmax = g.op(
                    'Cast',
                    softmax,
                    to_i=sym_help.scalar_type_to_onnx[parsed_dtype])
            return softmax

    max_value = g.op('ReduceMax', input, axes_i=[dim], keepdims_i=1)
    input = g.op('Sub', input, max_value)
    exp = g.op('Exp', input)
    sum = g.op('ReduceSum', exp, axes_i=[dim])
    softmax = g.op('Div', exp, sum)
    if dtype and dtype.node().kind() != 'prim::Constant':
        parsed_dtype = sym_help._get_const(dtype, 'i', 'dtype')
        softmax = g.op(
            'Cast', softmax, to_i=sym_help.scalar_type_to_onnx[parsed_dtype])
    return softmax


325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def _adaptive_pool(name, type, tuple_fn, fn=None):

    @parse_args('v', 'is')
    def symbolic_fn(g, input, output_size):
        if output_size == [1] * len(output_size) and type == 'AveragePool':
            return g.op('GlobalAveragePool', input)
        if not input.isCompleteTensor():
            if output_size == [1] * len(output_size):
                return g.op('GlobalMaxPool', input), None
            raise NotImplementedError(
                '[Adaptive pool]:input size not accessible')
        dim = input.type().sizes()[2:]
        if output_size == [1] * len(output_size) and type == 'MaxPool':
            return g.op('GlobalMaxPool', input), None

        # compute stride = floor(input_size / output_size)
        s = [int(dim[i] / output_size[i]) for i in range(0, len(dim))]

        # compute kernel_size = input_size - (output_size - 1) * stride
        k = [dim[i] - (output_size[i] - 1) * s[i] for i in range(0, len(dim))]

        # call max_poolxd_with_indices to get indices in the output
        if type == 'MaxPool':
            return fn(g, input, k, k, (0, ) * len(dim), (1, ) * len(dim),
                      False)
        output = g.op(
            type,
            input,
            kernel_shape_i=tuple_fn(k),
            strides_i=tuple_fn(s),
            ceil_mode_i=False)
        return output

    return symbolic_fn


adaptive_avg_pool1d = _adaptive_pool('adaptive_avg_pool1d', 'AveragePool',
                                     _single)
adaptive_avg_pool2d = _adaptive_pool('adaptive_avg_pool2d', 'AveragePool',
                                     _pair)
adaptive_avg_pool3d = _adaptive_pool('adaptive_avg_pool3d', 'AveragePool',
                                     _triple)


369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def new_full(g,
             self,
             size,
             fill_value,
             dtype,
             layout,
             device,
             pin_memory=False):
    from torch.onnx.symbolic_opset9 import full
    if dtype is None and self.isCompleteTensor():
        dtype = self.type().scalarType()
        dtype = sym_help.scalar_type_to_onnx.index(
            sym_help.cast_pytorch_to_onnx[dtype])
    return full(g, size, fill_value, dtype, layout, device, pin_memory)


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
@parse_args('v', 'v', 'i', 'i', 'i')
def grid_sampler(g,
                 input,
                 grid,
                 interpolation_mode,
                 padding_mode,
                 align_corners=False):
    return g.op(
        'mmcv::grid_sampler',
        input,
        grid,
        interpolation_mode_i=interpolation_mode,
        padding_mode_i=padding_mode,
        align_corners_i=align_corners)


401
402
403
404
405
406
407
408
409
410
@parse_args('v', 'i')
def cummax(g, input, dim):
    return g.op('mmcv::cummax', input, dim_i=dim, outputs=2)


@parse_args('v', 'i')
def cummin(g, input, dim):
    return g.op('mmcv::cummin', input, dim_i=dim, outputs=2)


411
412
413
@parse_args('v', 'v', 'is')
def roll(g, input, shifts, dims):
    from packaging import version
414
    from torch.onnx.symbolic_opset9 import squeeze
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    input_shape = g.op('Shape', input)

    need_flatten = len(dims) == 0
    # If dims is not specified, the tensor will be flattened before
    # rolling and then restored to the original shape.
    if need_flatten:
        resize_shape = input_shape
        input = g.op('Reshape', input,
                     g.op('Constant', value_t=torch.LongTensor([1, -1])))
        input_shape = g.op('Shape', input)
        dims = [1]

    for index, dim in enumerate(dims):
        end_size = sym_help._slice_helper(
            g, input_shape, axes=[0], ends=[dim + 1], starts=[dim])
        shift_size = sym_help._slice_helper(
            g, shifts, axes=[0], ends=[index + 1], starts=[index])
        slice_size = g.op('Sub', end_size, shift_size)

        # Can not use Mod because tensorrt does not support
        div_size = g.op('Div', slice_size, end_size)
        slice_size = g.op('Sub', slice_size, g.op('Mul', end_size, div_size))

        if version.parse(torch.__version__) >= version.parse('1.7.0'):
            # add dim=0 for pytorch 1.9.0
            end_size = squeeze(g, end_size, 0)
            slice_size = squeeze(g, slice_size, 0)
        else:
            end_size = g.op('Squeeze', end_size)
            slice_size = g.op('Squeeze', slice_size)
            dim = torch.LongTensor([dim])

        input_slice0 = sym_help._slice_helper(
            g,
            input,
            axes=dim,
            starts=torch.LongTensor([0]),
            ends=slice_size,
            dynamic_slice=True)
        input_slice1 = sym_help._slice_helper(
            g,
            input,
            axes=dim,
            ends=end_size,
            starts=slice_size,
            dynamic_slice=True)

        input = g.op('Concat', input_slice1, input_slice0, axis_i=dim)

    if need_flatten:
        input = g.op('Reshape', input, resize_shape)

    return input


470
def register_extra_symbolics(opset=11):
471
472
473
474
475
476
477
478
479
480
481
482
    # Following strings of text style are from colorama package
    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    white_background = '\x1b[107m'

    msg = white_background + bright_style + red_text
    msg += 'DeprecationWarning: This function will be deprecated in future. '
    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    msg += reset_style
    warnings.warn(msg)

483
484
485
486
487
488
489
490
491
492
493
    register_op('one_hot', one_hot, '', opset)
    register_op('im2col', im2col, '', opset)
    register_op('topk', topk, '', opset)
    register_op('softmax', softmax, '', opset)
    register_op('constant_pad_nd', constant_pad_nd, '', opset)
    register_op('reflection_pad1d', reflection_pad1d, '', opset)
    register_op('reflection_pad2d', reflection_pad2d, '', opset)
    register_op('reflection_pad3d', reflection_pad3d, '', opset)
    register_op('avg_pool1d', avg_pool1d, '', opset)
    register_op('avg_pool2d', avg_pool2d, '', opset)
    register_op('avg_pool3d', avg_pool3d, '', opset)
494
495
496
    register_op('adaptive_avg_pool1d', adaptive_avg_pool1d, '', opset)
    register_op('adaptive_avg_pool2d', adaptive_avg_pool2d, '', opset)
    register_op('adaptive_avg_pool3d', adaptive_avg_pool3d, '', opset)
497
498
499
500
501
502
503
504
    register_op('masked_select', masked_select, '', opset)
    register_op('upsample_nearest1d', upsample_nearest1d, '', opset)
    register_op('upsample_nearest2d', upsample_nearest2d, '', opset)
    register_op('upsample_nearest3d', upsample_nearest3d, '', opset)
    register_op('upsample_linear1d', upsample_linear1d, '', opset)
    register_op('upsample_bilinear2d', upsample_bilinear2d, '', opset)
    register_op('upsample_trilinear3d', upsample_trilinear3d, '', opset)
    register_op('upsample_bicubic2d', upsample_bicubic2d, '', opset)
505
    register_op('new_full', new_full, '', opset)
506
    register_op('grid_sampler', grid_sampler, '', opset)
507
508
    register_op('cummax', cummax, '', opset)
    register_op('cummin', cummin, '', opset)
509
    register_op('roll', roll, '', opset)