test_transformer.py 6.74 KB
Newer Older
1
2
import copy

3
4
5
6
7
8
9
import pytest
import torch

from mmcv.cnn.bricks.drop import DropPath
from mmcv.cnn.bricks.transformer import (FFN, BaseTransformerLayer,
                                         MultiheadAttention,
                                         TransformerLayerSequence)
10
from mmcv.runner import ModuleList
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97


def test_multiheadattention():
    MultiheadAttention(
        embed_dims=5,
        num_heads=5,
        attn_drop=0,
        proj_drop=0,
        dropout_layer=dict(type='Dropout', drop_prob=0.),
        batch_first=True)
    batch_dim = 2
    embed_dim = 5
    num_query = 100
    attn_batch_first = MultiheadAttention(
        embed_dims=5,
        num_heads=5,
        attn_drop=0,
        proj_drop=0,
        dropout_layer=dict(type='DropPath', drop_prob=0.),
        batch_first=True)

    attn_query_first = MultiheadAttention(
        embed_dims=5,
        num_heads=5,
        attn_drop=0,
        proj_drop=0,
        dropout_layer=dict(type='DropPath', drop_prob=0.),
        batch_first=False)

    param_dict = dict(attn_query_first.named_parameters())
    for n, v in attn_batch_first.named_parameters():
        param_dict[n].data = v.data

    input_batch_first = torch.rand(batch_dim, num_query, embed_dim)
    input_query_first = input_batch_first.transpose(0, 1)

    assert torch.allclose(
        attn_query_first(input_query_first).sum(),
        attn_batch_first(input_batch_first).sum())

    key_batch_first = torch.rand(batch_dim, num_query, embed_dim)
    key_query_first = key_batch_first.transpose(0, 1)

    assert torch.allclose(
        attn_query_first(input_query_first, key_query_first).sum(),
        attn_batch_first(input_batch_first, key_batch_first).sum())

    identity = torch.ones_like(input_query_first)

    # check deprecated arguments can be used normally

    assert torch.allclose(
        attn_query_first(
            input_query_first, key_query_first, residual=identity).sum(),
        attn_batch_first(input_batch_first, key_batch_first).sum() +
        identity.sum() - input_batch_first.sum())

    assert torch.allclose(
        attn_query_first(
            input_query_first, key_query_first, identity=identity).sum(),
        attn_batch_first(input_batch_first, key_batch_first).sum() +
        identity.sum() - input_batch_first.sum())

    attn_query_first(
        input_query_first, key_query_first, identity=identity).sum(),


def test_ffn():
    with pytest.raises(AssertionError):
        # num_fcs should be no less than 2
        FFN(num_fcs=1)
    FFN(dropout=0, add_residual=True)
    ffn = FFN(dropout=0, add_identity=True)

    input_tensor = torch.rand(2, 20, 256)
    input_tensor_nbc = input_tensor.transpose(0, 1)
    assert torch.allclose(ffn(input_tensor).sum(), ffn(input_tensor_nbc).sum())
    residual = torch.rand_like(input_tensor)
    torch.allclose(
        ffn(input_tensor, residual=residual).sum(),
        ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())

    torch.allclose(
        ffn(input_tensor, identity=residual).sum(),
        ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())


98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
@pytest.mark.skipif(not torch.cuda.is_available(), reason='Cuda not available')
def test_basetransformerlayer_cuda():
    # To test if the BaseTransformerLayer's behaviour remains
    # consistent after being deepcopied
    operation_order = ('self_attn', 'ffn')
    baselayer = BaseTransformerLayer(
        operation_order=operation_order,
        batch_first=True,
        attn_cfgs=dict(
            type='MultiheadAttention',
            embed_dims=256,
            num_heads=8,
        ),
    )
    baselayers = ModuleList([copy.deepcopy(baselayer) for _ in range(2)])
    baselayers.to('cuda')
    x = torch.rand(2, 10, 256).cuda()
    for m in baselayers:
        x = m(x)
        assert x.shape == torch.Size([2, 10, 256])


120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def test_basetransformerlayer():
    attn_cfgs = dict(type='MultiheadAttention', embed_dims=256, num_heads=8),
    feedforward_channels = 2048
    ffn_dropout = 0.1
    operation_order = ('self_attn', 'norm', 'ffn', 'norm')

    # test deprecated_args
    baselayer = BaseTransformerLayer(
        attn_cfgs=attn_cfgs,
        feedforward_channels=feedforward_channels,
        ffn_dropout=ffn_dropout,
        operation_order=operation_order)
    assert baselayer.batch_first is False
    assert baselayer.ffns[0].feedforward_channels == feedforward_channels

    attn_cfgs = dict(type='MultiheadAttention', num_heads=8, embed_dims=256),
    feedforward_channels = 2048
    ffn_dropout = 0.1
    operation_order = ('self_attn', 'norm', 'ffn', 'norm')
    baselayer = BaseTransformerLayer(
        attn_cfgs=attn_cfgs,
        feedforward_channels=feedforward_channels,
        ffn_dropout=ffn_dropout,
        operation_order=operation_order,
        batch_first=True)
    assert baselayer.attentions[0].batch_first
    in_tensor = torch.rand(2, 10, 256)
    baselayer(in_tensor)


def test_transformerlayersequence():
    squeue = TransformerLayerSequence(
        num_layers=6,
        transformerlayers=dict(
            type='BaseTransformerLayer',
            attn_cfgs=[
                dict(
                    type='MultiheadAttention',
                    embed_dims=256,
                    num_heads=8,
                    dropout=0.1),
                dict(type='MultiheadAttention', embed_dims=256, num_heads=4)
            ],
            feedforward_channels=1024,
            ffn_dropout=0.1,
            operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn',
                             'norm')))
    assert len(squeue.layers) == 6
    assert squeue.pre_norm is False
    with pytest.raises(AssertionError):
        # if transformerlayers is a list, len(transformerlayers)
        # should be equal to num_layers
        TransformerLayerSequence(
            num_layers=6,
            transformerlayers=[
                dict(
                    type='BaseTransformerLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',
                            embed_dims=256,
                            num_heads=8,
                            dropout=0.1),
                        dict(type='MultiheadAttention', embed_dims=256)
                    ],
                    feedforward_channels=1024,
                    ffn_dropout=0.1,
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm'))
            ])


def test_drop_path():
    drop_path = DropPath(drop_prob=0)
    test_in = torch.rand(2, 3, 4, 5)
    assert test_in is drop_path(test_in)

    drop_path = DropPath(drop_prob=0.1)
    drop_path.training = False
    test_in = torch.rand(2, 3, 4, 5)
    assert test_in is drop_path(test_in)
    drop_path.training = True
    assert test_in is not drop_path(test_in)