test_weight_init.py 18.9 KB
Newer Older
1
# Copyright (c) Open-MMLab. All rights reserved.
2
import random
3
4
from tempfile import TemporaryDirectory

5
6
7
import numpy as np
import pytest
import torch
8
from scipy import stats
9
10
from torch import nn

11
from mmcv.cnn import (Caffe2XavierInit, ConstantInit, KaimingInit, NormalInit,
12
                      PretrainedInit, TruncNormalInit, UniformInit, XavierInit,
13
                      bias_init_with_prob, caffe2_xavier_init, constant_init,
14
15
                      initialize, kaiming_init, normal_init, trunc_normal_init,
                      uniform_init, xavier_init)
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


def test_constant_init():
    conv_module = nn.Conv2d(3, 16, 3)
    constant_init(conv_module, 0.1)
    assert conv_module.weight.allclose(
        torch.full_like(conv_module.weight, 0.1))
    assert conv_module.bias.allclose(torch.zeros_like(conv_module.bias))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    constant_init(conv_module_no_bias, 0.1)
    assert conv_module.weight.allclose(
        torch.full_like(conv_module.weight, 0.1))


def test_xavier_init():
    conv_module = nn.Conv2d(3, 16, 3)
    xavier_init(conv_module, bias=0.1)
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    xavier_init(conv_module, distribution='uniform')
    # TODO: sanity check of weight distribution, e.g. mean, std
    with pytest.raises(AssertionError):
        xavier_init(conv_module, distribution='student-t')
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    xavier_init(conv_module_no_bias)


def test_normal_init():
    conv_module = nn.Conv2d(3, 16, 3)
    normal_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    normal_init(conv_module_no_bias)
    # TODO: sanity check distribution, e.g. mean, std


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def test_trunc_normal_init():

    def _random_float(a, b):
        return (b - a) * random.random() + a

    def _is_trunc_normal(tensor, mean, std, a, b):
        # scipy's trunc norm is suited for data drawn from N(0, 1),
        # so we need to transform our data to test it using scipy.
        z_samples = (tensor.view(-1) - mean) / std
        z_samples = z_samples.tolist()
        a0 = (a - mean) / std
        b0 = (b - mean) / std
        p_value = stats.kstest(z_samples, 'truncnorm', args=(a0, b0))[1]
        return p_value > 0.0001

    conv_module = nn.Conv2d(3, 16, 3)
    mean = _random_float(-3, 3)
    std = _random_float(.01, 1)
    a = _random_float(mean - 2 * std, mean)
    b = _random_float(mean, mean + 2 * std)
    trunc_normal_init(conv_module, mean, std, a, b, bias=0.1)
    assert _is_trunc_normal(conv_module.weight, mean, std, a, b)
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))

    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    trunc_normal_init(conv_module_no_bias)
    # TODO: sanity check distribution, e.g. mean, std


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def test_uniform_init():
    conv_module = nn.Conv2d(3, 16, 3)
    uniform_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    uniform_init(conv_module_no_bias)


def test_kaiming_init():
    conv_module = nn.Conv2d(3, 16, 3)
    kaiming_init(conv_module, bias=0.1)
    # TODO: sanity check of weight distribution, e.g. mean, std
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1))
    kaiming_init(conv_module, distribution='uniform')
    with pytest.raises(AssertionError):
        kaiming_init(conv_module, distribution='student-t')
    conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False)
    kaiming_init(conv_module_no_bias)


def test_caffe_xavier_init():
    conv_module = nn.Conv2d(3, 16, 3)
    caffe2_xavier_init(conv_module)


def test_bias_init_with_prob():
    conv_module = nn.Conv2d(3, 16, 3)
    prior_prob = 0.1
    normal_init(conv_module, bias=bias_init_with_prob(0.1))
    # TODO: sanity check of weight distribution, e.g. mean, std
    bias = float(-np.log((1 - prior_prob) / prior_prob))
    assert conv_module.bias.allclose(torch.full_like(conv_module.bias, bias))
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155


def test_constaninit():
    """test ConstantInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = ConstantInit(val=1, bias=2, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))

    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 1.))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    func = ConstantInit(val=3, bias_prob=0.01, layer='Linear')
    func(model)
    res = bias_init_with_prob(0.01)

    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))

    # test bias input type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, bias='1')
    # test bias_prob type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, bias_prob='1')
    # test layer input type
    with pytest.raises(TypeError):
        func = ConstantInit(val=1, layer=1)


def test_xavierinit():
    """test XavierInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = XavierInit(bias=0.1, layer='Conv2d')
    func(model)
    assert model[0].bias.allclose(torch.full_like(model[2].bias, 0.1))
    assert not model[2].bias.allclose(torch.full_like(model[0].bias, 0.1))

156
157
    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
    func = XavierInit(gain=100, bias_prob=0.01, layer=['Conv2d', 'Linear'])
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    res = bias_init_with_prob(0.01)
    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, res))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, res))

    # test bias input type
    with pytest.raises(TypeError):
        func = XavierInit(bias='0.1', layer='Conv2d')
    # test layer inpur type
    with pytest.raises(TypeError):
        func = XavierInit(bias=0.1, layer=1)


def test_normalinit():
    """test Normalinit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))

185
    func = NormalInit(mean=100, std=1e-5, bias=200, layer=['Conv2d', 'Linear'])
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    func(model)
    assert model[0].weight.allclose(torch.tensor(100.))
    assert model[2].weight.allclose(torch.tensor(100.))
    assert model[0].bias.allclose(torch.tensor(200.))
    assert model[2].bias.allclose(torch.tensor(200.))

    func = NormalInit(
        mean=300, std=1e-5, bias_prob=0.01, layer=['Conv2d', 'Linear'])
    res = bias_init_with_prob(0.01)
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert model[0].bias.allclose(torch.tensor(res))
    assert model[2].bias.allclose(torch.tensor(res))


202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def test_truncnormalinit():
    """test TruncNormalInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))

    func = TruncNormalInit(
        mean=100, std=1e-5, bias=200, a=0, b=200, layer=['Conv2d', 'Linear'])
    func(model)
    assert model[0].weight.allclose(torch.tensor(100.))
    assert model[2].weight.allclose(torch.tensor(100.))
    assert model[0].bias.allclose(torch.tensor(200.))
    assert model[2].bias.allclose(torch.tensor(200.))

    func = TruncNormalInit(
        mean=300,
        std=1e-5,
        a=100,
        b=400,
        bias_prob=0.01,
        layer=['Conv2d', 'Linear'])
    res = bias_init_with_prob(0.01)
    func(model)
    assert model[0].weight.allclose(torch.tensor(300.))
    assert model[2].weight.allclose(torch.tensor(300.))
    assert model[0].bias.allclose(torch.tensor(res))
    assert model[2].bias.allclose(torch.tensor(res))


229
230
231
def test_uniforminit():
    """"test UniformInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
232
    func = UniformInit(a=1, b=1, bias=2, layer=['Conv2d', 'Linear'])
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))

    func = UniformInit(a=100, b=100, layer=['Conv2d', 'Linear'], bias=10)
    func(model)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape,
                                                   100.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape,
                                                   100.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))


def test_kaiminginit():
    """test KaimingInit class."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = KaimingInit(bias=0.1, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))

257
258
    func = KaimingInit(a=100, bias=10, layer=['Conv2d', 'Linear'])
    constant_func = ConstantInit(val=0, bias=0, layer=['Conv2d', 'Linear'])
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    model.apply(constant_func)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 0.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.))

    func(model)
    assert not torch.equal(model[0].weight,
                           torch.full(model[0].weight.shape, 0.))
    assert not torch.equal(model[2].weight,
                           torch.full(model[2].weight.shape, 0.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 10.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 10.))


274
275
276
277
278
279
280
281
282
def test_caffe2xavierinit():
    """test Caffe2XavierInit."""
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    func = Caffe2XavierInit(bias=0.1, layer='Conv2d')
    func(model)
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 0.1))
    assert not torch.equal(model[2].bias, torch.full(model[2].bias.shape, 0.1))


283
284
285
286
287
288
289
290
291
292
293
294
295
class FooModule(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 2)
        self.conv2d = nn.Conv2d(3, 1, 3)
        self.conv2d_2 = nn.Conv2d(3, 2, 3)


def test_pretrainedinit():
    """test PretrainedInit class."""

    modelA = FooModule()
296
    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    modelA.apply(constant_func)
    modelB = FooModule()
    funcB = PretrainedInit(checkpoint='modelA.pth')
    modelC = nn.Linear(1, 2)
    funcC = PretrainedInit(checkpoint='modelA.pth', prefix='linear.')
    with TemporaryDirectory():
        torch.save(modelA.state_dict(), 'modelA.pth')
        funcB(modelB)
        assert torch.equal(modelB.linear.weight,
                           torch.full(modelB.linear.weight.shape, 1.))
        assert torch.equal(modelB.linear.bias,
                           torch.full(modelB.linear.bias.shape, 2.))
        assert torch.equal(modelB.conv2d.weight,
                           torch.full(modelB.conv2d.weight.shape, 1.))
        assert torch.equal(modelB.conv2d.bias,
                           torch.full(modelB.conv2d.bias.shape, 2.))
        assert torch.equal(modelB.conv2d_2.weight,
                           torch.full(modelB.conv2d_2.weight.shape, 1.))
        assert torch.equal(modelB.conv2d_2.bias,
                           torch.full(modelB.conv2d_2.bias.shape, 2.))

        funcC(modelC)
        assert torch.equal(modelC.weight, torch.full(modelC.weight.shape, 1.))
        assert torch.equal(modelC.bias, torch.full(modelC.bias.shape, 2.))


def test_initialize():
    model = nn.Sequential(nn.Conv2d(3, 1, 3), nn.ReLU(), nn.Linear(1, 2))
    foonet = FooModule()

327
    # test layer key
328
    init_cfg = dict(type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)
329
330
331
332
333
    initialize(model, init_cfg)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 1.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 2.))
334
335
    assert init_cfg == dict(
        type='Constant', layer=['Conv2d', 'Linear'], val=1, bias=2)
336

337
    # test init_cfg with list type
338
    init_cfg = [
339
        dict(type='Constant', layer='Conv2d', val=1, bias=2),
340
341
342
343
344
345
346
        dict(type='Constant', layer='Linear', val=3, bias=4)
    ]
    initialize(model, init_cfg)
    assert torch.equal(model[0].weight, torch.full(model[0].weight.shape, 1.))
    assert torch.equal(model[2].weight, torch.full(model[2].weight.shape, 3.))
    assert torch.equal(model[0].bias, torch.full(model[0].bias.shape, 2.))
    assert torch.equal(model[2].bias, torch.full(model[2].bias.shape, 4.))
347
348
349
350
    assert init_cfg == [
        dict(type='Constant', layer='Conv2d', val=1, bias=2),
        dict(type='Constant', layer='Linear', val=3, bias=4)
    ]
351

352
    # test layer key and override key
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    init_cfg = dict(
        type='Constant',
        val=1,
        bias=2,
        layer=['Conv2d', 'Linear'],
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    initialize(foonet, init_cfg)
    assert torch.equal(foonet.linear.weight,
                       torch.full(foonet.linear.weight.shape, 1.))
    assert torch.equal(foonet.linear.bias,
                       torch.full(foonet.linear.bias.shape, 2.))
    assert torch.equal(foonet.conv2d.weight,
                       torch.full(foonet.conv2d.weight.shape, 1.))
    assert torch.equal(foonet.conv2d.bias,
                       torch.full(foonet.conv2d.bias.shape, 2.))
    assert torch.equal(foonet.conv2d_2.weight,
                       torch.full(foonet.conv2d_2.weight.shape, 3.))
    assert torch.equal(foonet.conv2d_2.bias,
                       torch.full(foonet.conv2d_2.bias.shape, 4.))
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    assert init_cfg == dict(
        type='Constant',
        val=1,
        bias=2,
        layer=['Conv2d', 'Linear'],
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))

    # test override key
    init_cfg = dict(
        type='Constant', val=5, bias=6, override=dict(name='conv2d_2'))
    initialize(foonet, init_cfg)
    assert not torch.equal(foonet.linear.weight,
                           torch.full(foonet.linear.weight.shape, 5.))
    assert not torch.equal(foonet.linear.bias,
                           torch.full(foonet.linear.bias.shape, 6.))
    assert not torch.equal(foonet.conv2d.weight,
                           torch.full(foonet.conv2d.weight.shape, 5.))
    assert not torch.equal(foonet.conv2d.bias,
                           torch.full(foonet.conv2d.bias.shape, 6.))
    assert torch.equal(foonet.conv2d_2.weight,
                       torch.full(foonet.conv2d_2.weight.shape, 5.))
    assert torch.equal(foonet.conv2d_2.bias,
                       torch.full(foonet.conv2d_2.bias.shape, 6.))
    assert init_cfg == dict(
        type='Constant', val=5, bias=6, override=dict(name='conv2d_2'))
397
398
399
400
401
402

    init_cfg = dict(
        type='Pretrained',
        checkpoint='modelA.pth',
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))
    modelA = FooModule()
403
    constant_func = ConstantInit(val=1, bias=2, layer=['Conv2d', 'Linear'])
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    modelA.apply(constant_func)
    with TemporaryDirectory():
        torch.save(modelA.state_dict(), 'modelA.pth')
        initialize(foonet, init_cfg)
        assert torch.equal(foonet.linear.weight,
                           torch.full(foonet.linear.weight.shape, 1.))
        assert torch.equal(foonet.linear.bias,
                           torch.full(foonet.linear.bias.shape, 2.))
        assert torch.equal(foonet.conv2d.weight,
                           torch.full(foonet.conv2d.weight.shape, 1.))
        assert torch.equal(foonet.conv2d.bias,
                           torch.full(foonet.conv2d.bias.shape, 2.))
        assert torch.equal(foonet.conv2d_2.weight,
                           torch.full(foonet.conv2d_2.weight.shape, 3.))
        assert torch.equal(foonet.conv2d_2.bias,
                           torch.full(foonet.conv2d_2.bias.shape, 4.))
420
421
422
423
424
    assert init_cfg == dict(
        type='Pretrained',
        checkpoint='modelA.pth',
        override=dict(type='Constant', name='conv2d_2', val=3, bias=4))

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    # test init_cfg type
    with pytest.raises(TypeError):
        init_cfg = 'init_cfg'
        initialize(foonet, init_cfg)

    # test override value type
    with pytest.raises(TypeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override='conv')
        initialize(foonet, init_cfg)

    # test override name
    with pytest.raises(RuntimeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override=dict(type='Constant', name='conv2d_3', val=3, bias=4))
        initialize(foonet, init_cfg)

    # test list override name
    with pytest.raises(RuntimeError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            layer=['Conv2d', 'Linear'],
            override=[
                dict(type='Constant', name='conv2d', val=3, bias=4),
                dict(type='Constant', name='conv2d_3', val=5, bias=6)
            ])
        initialize(foonet, init_cfg)
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

    # test override with args except type key
    with pytest.raises(ValueError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            override=dict(name='conv2d_2', val=3, bias=4))
        initialize(foonet, init_cfg)

    # test override without name
    with pytest.raises(ValueError):
        init_cfg = dict(
            type='Constant',
            val=1,
            bias=2,
            override=dict(type='Constant', val=3, bias=4))
        initialize(foonet, init_cfg)